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Quantitative kinetic theory of flocking with three-particle closure
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We consider aligning self-propelled particles in two dimensions. Their motion is given by Langevin equations
and includes nonadditive N-particle interactions. The qualitative behavior is as for the famous Vicsek model.
We develop a kinetic theory of flocking beyond mean field. In particular, we self-consistently take into account
the full pair correlation function. We find excellent quantitative agreement of the pair correlations with direct
agent-based simulations within the disordered regime. Furthermore we use a closure relation to incorporate
spatial correlations of three particles. In that way we achieve good quantitative agreement of the onset of flocking
with direct simulations. Compared to mean-field theory, the flocking transition is shifted significantly toward
lower noise because directional correlations favor disorder. We compare our theory with a recently developed
Landau-kinetic theory.
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I. INTRODUCTION

Entities equipped with a propulsion mechanism, that is
active matter, transfer free energy into directed motion. Such
entities exist from micro- or even nanolength scales up to
macroscopic size. Examples are manmade microswimmers,
bacteria, insects, fish, mammals and robots.

Large groups of interacting active particles can exhibit
complex emergent collective phenomena that differ funda-
mentally from their equilibrium counterparts. Some promi-
nent examples are flocking [1,2], motility-induced phase
separation [3,4], and bacterial turbulence [5]. An overview on
the rapidly developing field of active matter and its application
can be found, e.g., in the reviews in Refs. [6–14].

The Vicsek model [1] is historically one of the first and
computationally one of the simplest active models that ex-
hibits a flocking transition. Therefore, it is considered as one
of the prototype models of active matter. In this model, point
particles move in two dimensions at constant speed v in indi-
vidual directions given by the polar angles φi, i ∈ {1, . . . , N}.
At points in time τ, 2τ, 3τ, . . . all particle directions φi are
changed due to interactions in the following way: Each parti-
cle takes the direction of the average velocity of all particles
within distance R (including the particle itself), disturbed by
a noise term. Thus, the interactions favor a local alignment of
the particle velocities.

For large systems and periodic boundary conditions the
Vicsek model is known in four phases [1,12,15–18]. For small
noise or large particle densities, on average all particles move
in a similar direction (i) [1].

Hence, we call the system polarly ordered. Furthermore,
particles tend to cluster together locally. However, the clusters
are distributed equally over space and thus the particle distri-
bution is homogeneous on larger length scales. By increasing
the noise strength or decreasing the particle density the system
arranges in a “cross sea” phase (ii) [18], where high density

regions that look like crossing wave fronts are formed. This
pattern moves through the system and the low density regions
have almost no polar order. For even larger noise strength
or smaller densities the system arranges in parallel noninter-
secting traveling high density bands (iii) [15]. Again, there
is almost no polar order in the low density regions between
the high density bands. In phases (ii) and (iii) there is still
an average polar order. The main contributions to the polar
order come from the high density regions. For very large noise
strength or very small particle densities there is no polar order
(iv). That is, for large systems there is no motion of the center
of mass and the particles are distributed homogeneously.

There have been qualitative descriptions of some of the
aforementioned phases by field- or kinetic theories [2,19–
25]. Those theories either do not reach quantitative agreement
with direct simulations or only for very special parameters.
In addition, most theories rely on the mean-field assumption.
There are also kinetic theories of active systems that consider
weak pair correlations to some extent; see, e.g., Refs. [26–29].
However, for the Vicsek model, recently it has been shown
quantitatively, that correlations of two and more particles are
important even in large parts of the disordered phase (iv) [30].

The aim of this paper is to provide a more quantitative
theoretical description of the model. For technical reasons we
are not studying the Vicsek model itself but a similar model
that is believed to behave qualitatively equivalent to the Vicsek
model. Major problems in kinetic theories of the standard
Vicsek model are difficulties related to the finite time step as
well as the presence of multiparticle collision integrals that
are not analytically solvable; see, e.g., Ref. [22]. The latter
was circumvented in Ref. [26] by using binary interactions
with randomly selected interaction partners.

In this paper we develop a ring-kinetic theory. That means,
we consider the dynamical equations for the one-particle
distribution and for the two-particle correlation function ex-
plicitly. Higher order correlations are neglected in the first
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step. However, the effects of the pair correlations on the one-
particle distribution as well as on the pair correlation function
itself, are fully taken into account. This concept has been
applied in various fields; see, e.g., Refs. [31–34]. In this paper,
we set up the ring-kinetic equations for N-particle interac-
tions, a significant difference to most previous applications.
That means the forces do not depend on the state of only two
particles but on the positions of all particles.

Within the disordered parameter regime, we find excellent
quantitative agreement between the ring-kinetic theory and
agent-based simulations. For a moderate particle density, we
find the threshold noise for the onset of flocking within the
ring-kinetic theory to be very close to the value measured in
agent-based simulations. In particular, the results are much
more precise than the predictions of mean-field theory.

For larger particle densities, at the onset of flocking,
higher-order correlations are more important. We extend the
ring-kinetic theory and incorporate also spatial three-particle
correlations via a closure ansatz. In that way, the flocking
transition can be described also for larger densities, and the
agreement between theory and simulations is further im-
proved at moderate densities, where we reach quantitative
agreement within the considered resolution. In addition, for
higher densities, our theory is a significant improvement over
mean field.

The paper is organized as follows. In Sec. II we define
and discuss the Vicsek-like model studied here. In Sec. III we
develop a homogeneous mean-field theory and calculate the
critical noise strength of the flocking transition. In Sec. IV we
introduce the notion of many particle correlations. In Sec. V
we develop the full ring-kinetic theory, that is the dynamical
equations for the one-particle distribution and the pair correla-
tion function neglecting higher order correlations. In Sec. VI
we present extensive quantitative comparisons between the
solutions of the ring-kinetic equations and direct agent-based
simulations. We identify the parameter region where the ring-
kinetic theory is applicable. In Sec. VII we employ a closure
relation to take into account spatial three-particle correlations.
In that way we can significantly enlarge the applicability
domain of the kinetic theory. In Sec. VIII we compare the
results of the kinetic theory presented in this work with the
simplified Landau kinetic theory of Patelli [29]. In Sec. IX we
discuss our results and give an outlook to possible extensions
of the method. In Appendix A we explicitly give the time
evolution equations of the one-particle distribution and of the
pair correlation function. In Appendix B we give all relevant
equations in Fourier space that have been used to evaluate the
kinetic equations numerically.

II. MODEL

We consider a Vicsek-like model in continuous time that
was investigated as here, or in a similar form in many studies;
see, e.g., Refs. [35–38]. The model is given by

ẋi = v cos(φi ),

ẏi = v sin(φi ),

φ̇i = w(|�(i)|)
∑

j∈�(i)

sin(φ j − φi ) + σξi, i = 1, . . . , N,

(1)

where ri(t ) = [xi(t ), yi(t )] denote the particles positions and
φi the directions of the particles velocities. The set

�i := { j ∈ {1, . . . , N} : |r j − ri| � R} (2)

contains all particles that are within distance R to particle i.
The ξi(t ) are independent Gaussian white noise terms satisfy-
ing

〈ξi(t )ξ j (s)〉 = δi jδ(t − s). (3)

The noise strength is given by σ , and w(n) is an interaction
weight function that depends on the number of neighbors
of particle i (particles that are within distance R including
particle i itself).

We consider the two-dimensional motion of N particles
that move at constant speed v in individual directions φi. The
directions of neighboring particles tend to align, however, they
are disturbed by noise. In the following, we discuss the cases
w(n) = 1 = const. and w(n) = 1/n.

From a technical point of view, the case w(n) = 1 = const.
is the most desirable since in this case, the model includes
only pair interactions. This has the advantage that, as in
the regular BBGKY-hierarchy, three-particle correlations can
be produced only from previously existing pair correlations,
four-particle correlations can only be produced from three-
particle correlations and so on. In contrast, if w is a function of
n as, e.g., w(n) = 1/n the interactions are in fact N-particle in-
teractions. That means, all orders of correlations are produced
immediately even if the model evolves from uncorrelated ini-
tial conditions.

Intuitively, one might think that such tiny details of the
model are not that important and might lead to qualitatively
equivalent results. The average number of neighbors is a con-
stant anyway and one might hope that the fluctuations of the
number of neighbors do not play a major role. Surprisingly,
that is not the case and the two models differ qualitatively;
see also [39] for a detailed analysis. For w(n) = 1 = const.
one still finds a homogeneous phase at large noise and a
polarly ordered phase at smaller noise for systems of finite
size. However, in the case of polar order, particles do not
arrange in high density bands or cross sea patterns but they
form high density clusters that contain almost all particles;
see Fig. 1.

It is not even clear if there is a disordered phase at all
in the thermodynamic limit. An alternative hypothesis is as
follows. For every finite but possibly large noise strength one
finds polar ordered clusters of very high densities for large
enough systems. Due to the additive nature of the alignment
interactions, such a cluster can remain stable even for large
noise strength if the density is large enough. It could be that
such a clustered state is the steady state for large systems at
any noise strength. However, sophisticated investigations are
necessary to answer this question. If one could show the exis-
tence of a disordered phase in the thermodynamic limit, and if
one would be interested only in the behavior of the disordered
phase (and not in the flocking transition), then one could also
study the simpler model with additive interactions. Differ-
ences between additive and nonadditive interactions have been
noticed already in Ref. [40], they have been studied in more
detail in a very recent work [39]. Although the model with
additive interactions is very interesting as well, we are mainly
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FIG. 1. Numerical results for the system (1) with w(n) = 1 =
const., simulated with an Euler-Maruyama-scheme [41] with �t =
0.01. Parameters are N = 104, L ≈ 177.25, v = R = 1, thus C1 :=
ρ0πR2 = 1. (a) Polar order parameter as a function of noise strength.
(b–d) Snapshots after a thermalization time T = 1000 in the disor-
dered phase (b) σ = 2.2, and in the polarly ordered phase (c) σ = 1.5
and (d) σ = 0.3.

interested in the study of models behaving qualitatively like
the Vicsek model. Hence, we focus on the case

w(n) = 1/n (4)

in this paper to reach quantitative agreement with agent-based
simulation. However, throughout the paper, the theory is for-
mulated for arbitrary weight functions w(n).

III. KINETIC THEORY

Instead of investigating the Langevin equations, Eq. (1),
we can equivalently study the associated N-particle Fokker-
Planck equation [42]

∂t PN (1, 2, . . . , N, t )

= −
N∑

i=1

∂φi [
N∑

j=1

w(|�(i)|)θi j

× sin(φ j − φi )PN (1, 2, . . . , N, t )]

−
N∑

i=1

v cos(φi)∂xi PN (1, 2, . . . , N, t )

−
N∑

i=1

v sin(φi )∂yi PN (1, 2, . . . , N, t )

+
N∑

i=1

σ 2

2
∂2
φi

PN (1, 2, . . . , N, t ), (5)

θi j := θ [R −
√

(x j − xi )2 + (y j − yi )2], (6)

where we used the abbreviation of writing just 1 instead of
x1, y1, φ1 and similar for 2, 3, . . . . The probability density
of finding the system in a phase space volume around the
coordinates given by 1, 2, . . . , N at time t is denoted by
PN (1, 2, . . . , N, t ). This equation is exact.

We assume that the probability density is initially and
hence at all times symmetric with respect to the permutation
of coordinates i ↔ j. We denote the marginalized probability
density by

Pk (1, 2, . . . , k, t ) :=
∫

PN (1, 2, . . . , N, t ) d (k + 1) . . . dN,

(7)

where dl denotes dxl dyl dφl and integration is performed
over the interval [0, L) for xl and yl and over the interval
[0, 2π ) for φl .

Using the Fokker-Planck Eq. (5) and the symmetry of
permutations of coordinates we obtain the time evolution of
the marginalized density

∂t P1(1, t )

= −∂φ1 [(N − 1)
∫

w(|�(1)|) d2 . . . dNθ12

× sin(φ2 − φ1)PN (1, 2, . . . , N, t )]

− v cos(φ1)∂x1 P1(1, t ) − v sin(φ1)∂y1 P1(1, t )

+ σ 2

2
∂2
φ1

P1(1, t ). (8)

We observe that the time evolution of the one-particle prob-
ability depends on the complete N particle probability due to
the fact that the number of neighbors |�(1)| of the first particle
depends on the positions of all the other particles.

For spatially homogeneous solutions, P1 depends only on
φ and t , hence we can define

pφ (φ1, t ) := L2P1(1, t ) (9)

such that Eq. (8) simplifies to

∂t pφ (φ1, t )

= −∂φ1 [(N − 1)
∫

w(|�(1)|) d1 . . . dN θ12

× sin(φ2 − φ1)PN (1, 2, . . . , N, t )]

+ σ 2

2
∂2
φ1

pφ (φ1, t ). (10)

Considering the noise strength σ as control parameter, in
the thermodynamic limit N → ∞, N

L2 = const., the system
exhibits a transition from disorder to polar order. In the disor-
dered phase, all particles directions are distributed randomly.
In the polar ordered phase there is a global preferred direction
of motion.

In the next section we calculate the threshold noise strength
where the transition takes place, within the mean-field theory.
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A. Mean-field Theory

Solving Eq. (10) exactly is very difficult or even impos-
sible. Therefore, we are looking for the stationary solution
under the mean-field assumption

PN (1, 2, . . . , N ) = P1(1)P1(2) . . . P1(N ), (11)

which simplifies with Eq. (9) to

PN (1, 2, . . . , N ) = 1

L2N
pφ (φ1)pφ (φ2) . . . pφ (φN ). (12)

To simplify the interaction term in Eq. (10) it is reasonable to
split the spatial integration domain R2(N−1) into pieces such
that the number of neighbors of particle one is constant on
each piece. Thus, for a fixed position of particle one, we label
subsets of R2(N−1) on which particle one has exactly n neigh-
bors by n. This has the advantage that w(n) is constant on
each subset. The union (over n) of all those pieces restores the
original spatial integration domain in Eq. (10). When there are
no neighbors of particle one (n = 0) there is no contribution
to the interaction term. Summarizing all nonzero interaction
terms, Eq. (10) becomes

∂t pφ (φ1, t ) = −∂φ1

[
N − 1

L2(N−1)

N−1∑
n=1

∫
w(n + 1) d2 dr3 . . . drNθ12 . . . θ1(n+1)(1 − θ1(n+2)) . . . (1 − θ1N ) sin(φ2 − φ1)

× pφ (φ1, t )pφ (φ2, t ) + permutations

]
+ σ 2

2
∂2
φ1

pφ (φ1, t ), (13)

where ri = (xi, yi ). In the above integral r2, . . . , rn+1 are integrated over the inside of the disk with radius R around par-
ticle one and rn+2, . . . , rN are integrated over the outside of the disk around particle one. That means n is the number
of neighbors of particle one. By permutations we mean all other choices of n − 1 particles from {3, . . . , N} to be inte-
grated over the inside. If we denote the indexes of particles chosen to be integrated over the inside by π (3), . . . , π (n+1)
and the indexes of the particles chosen to be integrated over the outside by π (n + 2), . . . , π (N ), then the product of Heaviside
functions reads θ12θ1π (3) . . . θ1π (n+1)(1 − θ1π (n+2)) . . . (1 − θ1π (N ) ). All those permutations π give the same contribution, hence
we can take care of them by a combinatorial factor to arrive at

∂t pφ (φ1, t ) = −∂φ1

[
N − 1

L2(N−1)

N−1∑
n=1

(
N − 2

n − 1

) ∫
w(n+1) d2 dr3 . . . drNθ12 . . . θ1(n+1)(1 − θ1(n+2)) . . . (1 − θ1N )

× sin(φ2 − φ1)pφ (φ1, t )pφ (φ2, t )

]
+ σ 2

2
∂2
φ1

pφ (φ1, t ). (14)

Here, in the two-dimensional case, the C1 coefficient is calculated as

C1 := N

L2

∫
θ12 dr2, (15)

that is the expectation value of the number of particles within a circle of radius R. Since we are interested in the thermodynamic
limit N → ∞ it suffices to approximate

(N − 1)

(
N − 2

n − 1

)
≈ Nn

(n − 1)!
. (16)

Inserting Eqs. (15) and (16) into Eq. (14) we obtain

∂t pφ (φ1, t ) = −
N−1∑
n=1

Cn
1

(n − 1)!

(
1 − C1

N

)N−1−n

w(n + 1)∂φ1

[ ∫
dφ2 sin(φ2 − φ1)pφ (φ1, t )pφ (φ2, t )

]
+ σ 2

2
∂2
φ1

pφ (φ1, t ). (17)

Taking the limit N → ∞ and substituting k = n − 1 we arrive at

∂t pφ (φ1, t ) = − C1

∞∑
k=0

Ck
1

k!
exp(−C1)w(k + 2)∂φ1

[ ∫
dφ2 sin(φ2 − φ1)pφ (φ1, t )pφ (φ2, t )

]
+ σ 2

2
∂2
φ1

pφ (φ1, t ). (18)

One way of treating Eq. (18) is to study its full Fourier transform. Since here we are only interested in the critical noise strength it
suffices to consider only the zeroth and the first order in the Fourier transform. Rotating the coordinate system in an appropriate
way we can use the ansatz

pφ (φ) = 1

2π
+ ε cos(φ). (19)

The isotropic distribution corresponding to ε = 0 is always a solution of Eq. (18). At the critical noise strength it changes
stability.
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Inserting the ansatz Eq. (19) into Eq. (18), multiplying by cos(φ1)/π integrating over φ1 and neglecting terms of order ε2 we
obtain by partial integration

∂tε = − 1

π
C1

∞∑
k=0

Ck
1

k!
exp(−C1)w(k + 2)

{ ∫ 2π

0
dφ1 dφ2 sin(φ1) sin(φ2 − φ1)

[
1

4π2
+ ε cos(φ1)

2π
+ ε cos(φ2)

2π

]}
− σ 2

2
ε

=
[

C1

2

∞∑
k=0

Ck
1

k!
exp(−C1)w(k + 2) − σ 2

2

]
ε. (20)

Hence, the mean-field critical noise strength is

σc =
√√√√C1

∞∑
k=0

Ck
1

k!
exp(−C1)w(k + 2). (21)

In case of the constant weight function w(n) = 1 this reduces
to

σc = √
C1. (22)

For a Poisson distribution we have〈
1

k + 1

〉
=

∞∑
k=0

1

k + 1

Ck
1

k!
exp(−C1)

= 1

C1

∞∑
k=0

Ck+1
1

(k + 1)!
exp(−C1)

= 1

C1

∞∑
k̃=1

Ck̃
1

k̃!
exp(−C1)

= 1

C1

[ ∞∑
k̃=0

Ck̃
1

k̃!
exp(−C1) − exp(−C1)

]

= 1

C1
[1 − exp(−C1)] (23)

and similar〈
1

k + 2

〉
=

〈
1

k + 1

〉
−

〈
1

(k + 1)(k + 2)

〉

=
〈

1

k + 1

〉
− 1

C2
1

∞∑
k̃=2

Ck̃
1

k̃!
exp(−C1)

=
〈

1

k + 1

〉
− 1

C2
1

[1 − (1 + C1) exp(−C1)]. (24)

Hence, for the weight function w(n) = 1/n we obtain the
critical noise strength using Eqs. (21), (23), and (24):

σc =
√

{1 − exp(−C1) − 1

C1
[1 − (1 + C1) exp(−C1)]}

=
√

1 − 1

C1
[1 − exp(−C1)]. (25)

IV. CORRELATIONS

In general, the mean-field assumption Eq. (11) is not valid
but must be corrected by terms containing correlations of vari-
ous order. The correlation functions Gk are defined recursively

by [31,43,44]

G1 ≡ P1, (26)

Gk (1, · · · , k)

:= Pk (1, · · · , k) −
∑

σ

k−1∑
l=1

1

(l − 1)!

1

(k − l )!

×Gl [1, σ (2), · · · , σ (l )]Pk−l [σ (l + 1), . . . , σ (k)], (27)

where
∑

σ denotes the sum over all permutations of the
elements {2, · · · , k}. We can rewrite Eq. (27) as Pl (. . . ) =
Gl (. . . ) + . . . and insert it recursively for all Pl of order
l < k into Eq. (27) and eventually replace P1 by G1. Perform-
ing such an expansion, only Pk and G-functions remain on
the right-hand side of Eq. (27). It follows inductively from
Eq. (27) that the indexes of all correlation functions on the
right-hand side are ordered, that is for each term Gl (i1, . . . , il )
appearing in the expansion of Eq. (27) it holds i1<i2< . . . <il .
Thus, instead of Eq. (27) we might alternatively write

Gk (1, . . . , k) = Pk (1, . . . , k) −
∑

{over all possible

products of G-functions such that each of the arguments

1, . . . , k appears exactly once and for each G-function

the arguments are ordered}. (28)

For example, the two-, three-, and four-particle correlation
functions are given explicitly as

G2(1, 2) = P2(1, 2) − P1(1)P1(2) (29)

G3(1, 2, 3) = P3(1, 2, 3) − P1(1)P1(2)P1(3)

− P1(1)G2(2, 3) − P1(2)G2(1, 3)

− P1(3)G2(1, 2), (30)

G4(1, 2, 3, 4) = P4(1, 2, 3, 4) − P1(1)P1(2)P1(3)P1(4)

− G2(1, 2)P1(3)P1(4) − G2(1, 3)P1(2)P1(4)

− G2(1, 4)P1(2)P1(3) − G2(2, 3)P1(1)P1(4)

− G2(2, 4)P1(1)P1(3) − G2(3, 4)P1(1)P1(2)

− G2(1, 2)G2(3, 4) − G2(1, 3)G2(2, 4)

− G2(1, 4)G2(2, 3) − G3(1, 2, 3)P1(4)

− G3(1, 2, 4)P1(3) − G3(1, 3, 4)P1(2)

− G3(2, 3, 4)P1(1). (31)

We want to mention some important properties of the cor-
relation functions Gk . Since we assume that the N-particle
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probability distribution is symmetric with respect to particle
exchanges, also the correlation functions follow the same
symmetry. Furthermore, for k � 2 it holds

∫
Gk (1, . . . , k) dk = 0, (32)

where the integration is performed over the whole space and
all possible orientations of particle k. This property follows by
induction over k from Eq. (27). It shows that Gk contains only
information about k-particle correlations and not about lower
order correlations. As a simple consequence it follows that

∫
X

Gk (1, . . . , k) dk = −
∫

XC

Gk (1, . . . , k) dk, (33)

where X is some subset of the set of all possible configurations
of particle k and XC is the complement of X .

V. RING-KINETIC THEORY

The mean-field assumption Eq. (11) is equivalent to van-
ishing correlation functions Gi ≡ 0 for i � 2. In this paper we
go one step further and take two-particle correlations into ac-
count. However, we still assume that higher-order correlations

can be neglected. That is, we consider

P1(1, t ), G2(1, 2, t ) := P2(1, 2, t ) − P1(1, t )P1(2, t ),

Gi(1, · · · , i, t ) ≡ 0 for i � 3. (34)

Similar assumptions have been made in Ref. [26] but also in
a very recent kinetic Landau theory [29] on the model with
additive interactions, that is with w(n) ≡ 1. Therein, it was
assumed additionally that G2 is small and furthermore that
also noise and coupling are small. It should be mentioned that
according to [30] and to the results presented in this work, it
follows that in the vicinity of the flocking transition and even
in a considerable part of the disordered phase, the assumption
of negligible G3 and small G2 is not justifiable. However, far
in the disordered regime it is a reasonable approximation. In
Sec. VIII we present a detailed comparison of the Landau
theory of [29] applied to the model of nonadditive interactions
with our full ring-kinetic theory.

In this paper we impose no restrictions on G2, that means
we allow large pair correlations. As we assume spatial homo-
geneity, the one-particle probability density P1 is independent
on the position (x1, y1) and it suffices to consider the angular
dependence pφ given by Eq. (9). Similarly, the two-particle
probability density P2 depends only on the angles φ1, φ2 and
on the distance between the spatial coordinates �x := x2 −
x1,�y := y2 − y1, � = (�x,�y). Hence, it is reasonable to
introduce the reduced probability density

p2(φ1, φ2,�) := L2
∫

P2(φ1, φ2, x1, x2, y1, y2)δ[�x − (x2 − x1)]δ[�y − (y2 − y1)] dx1 dx2 dy1 dy2

= L4P2(φ1, φ2, x1, x2 = x1 + �x, y1, y2 = y1 + �y) (35)

and correlation functions

g2(φ1, φ2,�) := L2
∫

G2(φ1, φ2, x1, x2, y1, y2)δ[�x − (x2 − x1)]δ[�y − (y2 − y1)] dx1 dx2 dy1 dy2

= L4G2(φ1, φ2, x1, x2 = x1 + �x, y1, y2 = y1 + �y). (36)

We obtain the time evolution equations of the reduced one-
and two-particle probability density functions, that are the
first two equations of the BBGKY-hierarchy, from the Fokker-
Planck Eq. (5) using the marginalization Eq. (7), plugging
in the cluster expansion Eq. (27) and using the ring-kinetic
ansatz Eq. (34) as well as properties Eqs. (32) and (33) of the
correlation functions. For example, the derivation of the time
evolution of the single particle distribution can be explained in
four steps. (i) In Eq. (5), particle one interacts with particles
2, . . . , N . After integrating over the degrees of freedom of
particles 2, . . . , N all these interaction terms are equal due
to the symmetry of PN under permutation of the particles.
Thus, it suffices to consider interactions between particle one
and another arbitrarily chosen particle when the interaction
term is multiplied by N − 1. Here, we choose particle three
as interaction partner. (ii) Plugging in the cluster expansion
Eq. (27) for PN , we have a sum of products of P1’s and
G2’s. We can sort the summands by the terms depending on
particle one and on particle three. These are the terms that are
involved in the interaction. For example, one type of terms

is P1(1)P1(3) multiplied with arbitrary combinations of P1’s
and G2’s. Another example is P1(1)G2(3, 7), etc. (iii) For
each of the terms classified in step (ii) we split the spatial
integration of the involved particles in an integral over the
interior of the circle around particle one and an integral over
the exterior of a circle around particle one. However, particle
three must be integrated over the interior of the circle only,
because particles one and three are interacting according to
step (i). Note that for particles that appear as arguments of G2

the value of the integral over the interior of the circle is exactly
minus the value of the integral over the exterior of the circle
due to Eq. (33). The classes of terms specified in step (iii)
correspond to the diagrams in the following equation. (iv) In a
last step we consider the integration over all particles that are
not directly involved in the interaction, that means, that are not
the arguments of the terms specified in step (ii). Depending on
whether these particles are in the circle around particle one or
not, they effect the weight function w(n). Otherwise, they do
not take part in the interaction and they are not correlated (in
the considered terms) with the particles involved in the inter-
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action. Thus, the average over the remaining particles results
in an expectation value of the weight function w(n) that can
be calculated explicitly by methods of Ref. [30] in the limit
N → ∞. We use the following diagramatic representation of
the appearing collision integrals

(37)

(38)

(39)

(40)

(41)

(42)

All terms representing a symbol in a diagram are meant to be
multiplied and integrated over all degrees of freedom that do
not occur on the left-hand side of the equation in which the
diagram appears. As an example, we give the meaning of the
following integral:

(43)

For the one-particle angular distribution we find within our
diagramatic notation

(44)

See Eq. (A1) in Appendix A for Eq. (44) without diagramatic
notation. Here, ρ := N/L2 denotes the average particle den-
sity and wk the expectation value of the weight function for
k + l neighbors with respect to the distribution of the number
of particles found within a circle of radius R, q(l ), that is

wk := 〈w(k + l )〉 =
∞∑

l=0

w(k + l )q(l ). (45)

The distribution of the number of correlated particles that
are placed within a circle of radius R was recently derived
in Ref. [30]. In case that only two-particle correlations are
present this distribution depends only on parameter

C2 :=N2
∫

G2(1, 2)θ1θ2 d1 d2, (46)

where

θi := θ (R −
√

x2
i + y2

i ), (47)

with the Heaviside function θ . A similar quantity that effects
the number of neighbor distribution [30] is

D2 :=N
∫

G2(1, 2)θ12 d1 d2, (48)

where θi j is given by Eq. (6) The distribution of the number
of particles within a circle of radius R is given in Ref. [30] as

q(l ) =(C1 − C2)l exp(C2/2 − C1)

×
∞∑

k=0

[
C2

2(C1 − C2)2

]k 1

k!(l − 2k)!
. (49)

As before, C1 = N
L2 πR2 is just the average number of neigh-

bors. Alternatively to the representation by an infinite sum
Eq. (49) one can give a simple expression for the characteristic
function of q(l ) [30]

χ (u) = exp

[ 2∑
l=1

l∑
t=0

(−1)l+t Cl

l!

(
l

t

)
exp(itu)

]
. (50)

Coming back to Eq. (44), we give a guide to explain all
interaction integrals. Those are all possible diagrams where
each particle is connected to 1 via a solid line or an arrow
(that means all particles are neighbors of particle 1) such that
every point is connected to 1 also via a path consisting only of
arrows and/or coils and there is exactly one arrow that starts
from 1. Particles that are not connected to 1 via a path of
arrows and/or coils do not directly take part in the interactions
and thus do not appear in the diagrams. Because there is only
one arrow in the diagrams and each point can be connected
to only one coil (that represents g2) the diagrams can have no
more than four points. Each diagram has a prefactor of −ρk−1,
where k is the number of particles involved in the diagram.
This prefactor is a combination of a combinatorial factor and
1/L2k from Eq. (9) or Eq. (36). Furthermore, there is another
prefactor of wk that takes into account the expectation value
of the weight function when an average over all particles not
involved in the diagram is performed. In principle, we would
have additional diagrams where points not connected via an
arrow are connected to 1 via dashed lines, that means those
particles are not a neighbor of particle 1. However, we can
replace each dashed line by a solid line and multiply with −1
to compensate it due to property Eq. (33). However, for these
additional diagrams we have different prefactors of wk−1 or
wk−2 if one or two dashed lines are involved, respectively, due
to the different number of neighbors of particle 1. Considering
all the aforementioned interaction terms, angular diffusion
and streaming we arrive at Eq. (44). Note that for pair inter-
actions, w(n) = const., we have w2 = w3 = w4 and only the
first two interaction integrals remain.

Analogously to Eq. (44), we find starting from Eq. (5),
the time evolution equation for the two-particle probability
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distribution

+ σ 2

2
∂2
φ1

[p(φ1)p(φ2) + g2(φ1, φ2,�)] + 1 ↔ 2

+ v(cos φ1 − cos φ2)∂�x g2(φ1, φ2,�) + v(sin φ1 − sin φ2)∂�y g2(φ1, φ2,�), (51)

where 1 ↔ 2 is an abbreviation for all previous terms with particles one and two interchanged.
Employing Eq. (29), in our notation Eqs. (9), (35), and (36),

g2(φ1, φ2,�) = p2(φ1, φ2,�) − L2 pφ (φ1)pφ (φ2), (52)

we obtain the time evolution equation of the pair correlation function

∂t g2(φ1, φ2,�) = ∂t p2(φ1, φ2,�) − L2 pφ (φ1)∂t pφ (φ2)

− L2 pφ (φ2)∂t pφ (φ1). (53)

Inserting Eqs. (44) and (51) yields
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+ σ 2

2
∂2
φ1

g2(φ1, φ2,�) + 1 ↔ 2

+ v(cos φ1 − cos φ2)∂�x g2(φ1, φ2,�) + v(sin φ1 − sin φ2)∂�y g2(φ1, φ2,�). (54)

See Eq. (A2) in Appendix A for Eq. without diagramatic
notation. Note that, for example, the multiplication

(55)

can be done symbolically. A number of collision integrals in
∂t p2 and −L2 pφ (φ1)∂t pφ (φ2) or −L2 pφ (φ2)∂t pφ (φ1) cancel

such as for example . However, their counter-
parts with particles one and two being neighbors, such as for

example do not cancel. This is an effect of the
N-particle interactions. As a result these terms appear with
different sign but also with different prefactors and thus they
do not cancel. This effect is responsible for a number of terms
that are not present for pair interactions, w(n) = const.

VI. COMPARISON OF RING-KINETIC THEORY
AND AGENT-BASED SIMULATIONS

Recently, a quantitative numerical method to predict the
minimal required order of correlations has been introduced in
Ref. [30]. It is based on the measurement of the number of
neighbors distribution (neighbors are particles that are closer
than R) of a randomly selected particle. Besides this measure-
ment, the number of neighbors distribution is also calculated
under the assumption that only correlations up to a given
order lmax are present, that is Gl ≡ 0 for all l > lmax. If both
distributions agree reasonably well, then the correlation order
lmax is considered to be sufficient; see Ref. [30] for details.

In Fig. 2 we show a correlation map that we obtained
by this method for large systems of N = 104 particles. It
shows, depending on parameters, which order of correlations
is required. We expect excellent quantitative predictions of the
ring-kinetic theory in a parameter regime where pair correla-
tions are sufficient. Strictly speaking, this is the case in the
disordered phase only. However, we find that a reasonable
ring-kinetic description of the system is still possible if the
influence of higher-order correlations is already measurable
but still not dominant.

We solve the time evolution equations for pφ and g2,
Eqs. (44) and , numerically in Fourier space; see Appendix
B. As a measurable quantity we consider the standard radial

distribution function g(r) that is defined by

g(r) = L2

N (N − 1)

∑
i �= j

1

2πr
〈δ(r − |ri − r j |)〉. (56)

It is related to the correlation function g2 given in Eq. (36) by

g(r) = 1 +
∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ L

0
d�x

∫ L

0
d�y

× g2(φ1, φ2,�)
1

2πr
δ(r − |�|) (57)

FIG. 2. Correlation map of the Vicsek-like model given by
Eq. (1) with w(n) = 1/n. Colors encode the necessary order of
correlations (e.g., cyan∼3 ∼three-particle correlations, etc.) for a
quantitative description of the system. The correlation map was ob-
tained by a recently introduced method [30] comparing the measured
number of neighbor distribution to a theoretically predicted one.
One considers the number of neighbor distribution to be acceptably
close if the corresponding Kullback-Leibler divergence is less than
10−3. We simulated 24 realizations for each noise strength σ ∈
{0.05, 0.1, 0.15, . . . , 1.5} and each particle density C1 = ρπR2 ∈
{0.2, 0.4, 0.6, . . . , 5.0} with parameters v = R = 1, N = 104. For
this system size, typically, the number of neighbor distribution has
achieved its N → ∞ limit at least in the disordered phase. The
correlation parameters have been measured for a time interval of 104

after a thermalization time of 103. Equation (1) was integrated using
an Euler-Maruyama scheme with time step �t = 10−2. The analysis
has been done as in Ref. [30]. The red curve shows the mean-field
transition line given by Eq. (25).
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FIG. 3. Radial distribution function g(r) obtained from ring-
kinetic theory (blue solid line) and sampled directly from agent-
based simulations according to Eq. (56) (black solid line). For the
ring-kinetic theory we integrate the time evolution Eqs. (44) and in
Fourier space (see Appendix B) with an Euler scheme with step size
�t = 10−2 for an absolute time of 100, starting initially uncorrelated
and disordered. For the agent-based simulation we integrate Eq. (1)
with an Euler-Maruyama scheme with step size �t = 10−2. After a
thermalization time of 103 we average over a time of 104 and over
24 realizations. Parameters are σ = 1.5, v = R = 1, N = 509, C1 =
ρπR2 = 1, L ≈ 40. The ring-kinetic theory uses Fourier modes Fklmn

according to Eq. (B2) with angular indexes k, l ∈ {−2, . . . , 2} and
spatial indexes m, n ∈ {−48, . . . , 48}. Performing a spatial Fourier
transform of the measured curve (black line) with indexes from the
same range m, n ∈ {−48, . . . , 48} and transforming back into real
space we obtain the dashed green line. The dashed solid line at y = 1
serves as a guide to the eyes.

and can be calculated analytically from the Fourier represen-
tation; see Appendix B.

In Fig. 3 we compare the radial distribution function
measured in agent-based simulations with the results from
ring-kinetic theory. Overall they agree very well, however,
there are minimal deviations. Those deviations can be ex-
plained by the finite resolution used in the Fourier transform.
We evaluated the ring-kinetic equations in Fourier space us-
ing a minimal spatial wave length of 0.83. Since the radial
distribution functions g(r) drops rapidly at about r ≈ 1 it is
not perfectly resolved, causing small deviations. To test this
hypothesis, we Fourier transform the pair correlation function
corresponding to the measured g(r) with the same spatial
resolution and Fourier transform it back into real space. The
resulting curve deviates by less than one percent from the
ring-kinetic result; see Fig. 3. The ring-kinetic theory predicts
the full two-particle correlation function g2(φ1, φ2,�) and not
only the radial distribution function g(r) that is an integral of
it; see Eq. (57). Without spontaneous symmetry breaking, that
is in the disordered phase, the system is isotropic. In that case,
the pair correlation function depends only on three indepen-
dent arguments and not on four, such as φ1, φ2, �x, and �y.
We choose those three degrees of freedom as the length of the
vector �, r := |�|, the difference between the orientations of
the two particles, �φ := φ2 − φ1, and the difference of the
polar angle of the vector � and the orientation of the first
particle α := γ − φ1, where γ is the polar angle of the vector
�; see Fig. 4. Depending one those arguments we define the

11

11

22

11

22

FIG. 4. Sketch of the three arguments r, α, and �φ of the pair
correlation function h for homogeneous and isotropic systems; see
Eq. (58) for the definition of h(r, α,�φ). The blue points denote the
positions of particles one and two. Their distance is denoted by r
and their direction of motion (red arrows) is given by the angles φ1

and φ2. The difference between those two angles is denoted by �φ.
The difference between the polar angle γ of the vector pointing from
particle one to particle two and φ1 is denoted by α.

function

h(r, α,�φ) := 2π

∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ 2π

0
dγ

× g2(φ1, φ2,�x = r cos γ ,�y = r sin γ )

× δ(α − γ + φ1)δ(�φ − φ2 + φ1). (58)

For translational and rotational invariant systems it contains
all information about two-particle correlations. It can be
directly sampled from numerical data according to

h(r, α,�φ) = L2(2π )2

N (N − 1)

1

2πr

∑
i �= j

〈δ(r − |ri − r j |)

× δ(α − γi j + φi )δ(�φ − φ j + φi )〉 − 1.

(59)

A. Dependence of h(r, α,�φ) on �φ

We consider the dependence of the correlation function
h(r, α,�φ) on the difference in orientation of the two par-
ticles �φ for fixed r and α. In Fig. 5 we fix r = 0.5 and
α = 0, π/2, π, 3π/2. That means that the two particles are
in the interior of each others interaction circle. We see that
the correlations are highest for �φ = 0 showing that nearby
particles align. For �φ = π the correlations are even slightly
negative. Rotations of one particle around the other seem to
be of no particular importance at the considered distance as
we see almost the same picture for different values of α. In
Fig. 6 we fix r = 1.0. That means both particles are exactly
at the boundary of each others interaction region. For α = 0
and α = π , that means if particle two is in the front or in the
back of particle one (looking in the direction of motion of
particle one), the distribution of h(�φ) is still symmetric with
a maximum at �φ = 0. If particle two is on the left or on
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FIG. 5. Dependence of the correlation function h(r, α,�φ) on
difference of velocity directions �φ for fixed values of r = 0.5 and α

(value given in the plot). Results of the ring-kinetic theory (blue line)
are compared to direct measurements of agent-based simulations
(black line). Parameters as described in the caption of Fig. 3.

the right of particle one, then it is slightly more likely that
particle two points a bit outward the interaction region than
to be perfectly aligned with particle one. This is reasonable
due to the following argument. When particle two is placed at
distance r = 1 at a given time, it is more likely that it was at
r < 1 than that it was at r > 1 shortly before, because the pair
correlations are much higher for r < 1.

In Fig. 7 we fix r = 1.5. Thus, the two particles are not
directly interacting with each other. We see that the strength
of the correlations is much smaller in this case. Also the fluc-
tuations in the measurements of agent-based simulations are
larger, because there are less events sampled. Quantitatively,
the correlations are similar to the case of r = 1.0.

FIG. 6. Two-particle correlation function h as a function of the
difference of the velocity directions of both particles as in Fig. 5,
but here for r = 1. The black bullets sketch the relative positions
of particle one (in the center of the circle) and particle two (on the
circumference of the circle). The red arrows indicate the direction of
the particle velocities at �φ = 0.

FIG. 7. Two-particle correlation function h as a function of the
difference of the velocity directions of both particles as in Fig. 5, but
here for r = 1.5.

B. Dependence of h(r, α, �φ) on α

In Fig. 8 we consider the α-dependence of the correla-
tion function h for r = 0.5 and different values of �φ. As
discussed in the previous subsection, there is almost no α-
dependence. The value of h is largest for �φ = 0 and smallest
and even negative for �φ = π which is in agreement with
Fig. 5.

In Fig. 9 we fix r = 1. For aligned particles, �φ = 0, the
α-dependence of the correlation function is still very small
with a slight preference of particle two being right or left of
particle one compared to a placement in the front or back of
particle one. For antialigned particles, �φ = π , it is unlikely
that particle two is in the back of particle one. In that case,
the particles would move away from each other. That means

FIG. 8. Dependence of the correlation function h(r, α,�φ) on
the angle α giving the rotation of particle two around particle with
respect to the direction of motion of particle one. Fixed values of r =
0.5 and �φ (value given in the plot) are considered. Results of the
ring-kinetic theory (blue line) are compared to direct measurements
of agent-based simulations (black line). Parameters as described in
the caption of Fig. 3.
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FIG. 9. Two-particle correlation function h as a function of the
relative orientation α as in Fig. 8, but here for r = 1. The black
bullets sketch the relative positions of particle one (in the center of
the circle) and particle two (on the circumference of the circle) at
α = 0. The red arrows indicate the direction of the particle velocities.

that they have been closer to each other in the past which
makes it unlikely that they are antialigned. For �φ = π/2 and
�φ = 3π/2, there is a complex α-dependence with maximal
correlations at α ≈ 0.75π and α ≈ −0.75π , respectively. The
value of α with minimal correlations is shifted by π with
respect to the values of maximal correlations.

In Fig. 10 we fix r = 1.5. The correlation function behaves
qualitatively similar to the case of r = 1, however here, the
correlations are much smaller.

C. Dependence of h(r, α,�φ) on r

In this subsection we consider the r-dependence of the
correlation function h for fixed values of α and �φ. We find
the same qualitative behavior for all considered values of α;
see Figs. 11–14. For �φ = 0, π/2 and 3π/2, for small r the
function h shows a plateau of high correlations and decreases

FIG. 10. Two-particle correlation function h as a function of the
relative orientation α as in Fig. 8, but here for r = 1.5.

FIG. 11. Dependence of the correlation function h(r, α,�φ) on
the distance r for fixed values of α = 0 and �φ (value given in the
plot). Results of the ring-kinetic theory (blue line) are compared to
direct measurements of agent-based simulations (black line). Param-
eters as described in the caption of Fig. 3.

relatively fast at about r = 1 toward zero. For �φ = π , the
plateau for small r is negative and the decay toward zero at
about r = 1 is still present. This shows that nearby antialigned
particles are unlikely.

D. Applicability of the ring-kinetic theory

In the previous subsections we have seen that for the
considered parameters, the ring-kinetic theory agrees very
well with direct agent-based simulations. There are only very
small deviations partially caused by the finite resolution in
the Fourier transform in the numerical implementation of the
ring-kinetic equations. In this subsection we study the appli-
cability of the ring-kinetic theory depending on parameters.
We have seen in the previous subsections that the spatial pair
correlations decay rather rapidly for r � R. Therefore, we
compare the integrated connected spatial pair correlations C2

and D2 defined in Eq. (46) between ring-kinetic theory and

FIG. 12. Two-particle correlation function h as a function of
distance r as in Fig. 11, but here for α = π/2.
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FIG. 13. Two-particle correlation function h as a function of
distance r as in Fig. 11, but here for α = π .

direct simulations in Fig. 15. We see very good agreement be-
tween ring-kinetic theory and simulations for noise strengths
σ � 0.68. For smaller noise strengths we find serious devia-
tions.

For the considered parameter set, homogeneous mean-
field theory, Eq. (25), predicts the onset of collective motion
at σc ≈ 0.607. In the direct simulations we determined the
onset of flocking at σc,sim = 0.53(1) from fluctuations of

the polar order parameter p = |p| =
√

p2
x + p2

y, with px =
1/N

∑N
i=1 cos φi, py = 1/N

∑N
i=1 sin φi; see Fig. 16.

Returning to the deviations of the spatial correlations pre-
dicted by ring-kinetic theory in Fig. 15, we find that they are
significant already before the onset of flocking. Nevertheless,
the predicted correlations are not completely wrong, but have
the correct order of magnitude. Therefore, we can still obtain
the onset of collective motion using the ring-kinetic theory.

To analyze fluctuations or susceptibilities we would require
to analyze stationary states also within the ordered phase.
However, the solutions of the ring-kinetic equations require

FIG. 14. Two-particle correlation function h as a function of
distance r as in Fig. 11, but here for α = 3π/2.

FIG. 15. Local spatial pair correlation parameters C2 (a) and D2

(b) as defined in Eq. (46) compared for direct simulations (black
line), ring-kinetic theory (blue line), and a kinetic theory including
a g3-closure (red line). The dashed vertical lines shows the onset
of flocking measured in agent-based simulations at σc,sim = 0.53
(black), in the ring-kinetic theory at σc,rk = 0.575 (blue), ring-kinetic
theory with closure at σc,closure = 0.575 (red) and in mean-field theory
at σc,mf = 0.607 (purple). System parameters are: C1 = ρπR2 = 1,
R = v = 1, N = 509. For comparison we give also the measured
flocking transition in the thermodynamic limit σc,sim,N→∞ = 0.58
(dotted black line) obtained for N = 104 in Ref. [30].

a very long time to become stationary in the ordered regime
(when started with only a minimal polar order). Therefore,
we determine the onset of flocking within the ring-kinetic
theory by a numerical stability analysis of the disordered
state. In the numerical solution of the ring-kinetic equations
we start with some (very small) initial polar order because
the disordered states are always (for small noise unstable)
stationary solutions. We started with an initial polar order of
p0 = 2π × 10−6 and considered the state as polarly ordered if
the final polar order (after a total time of 250 or 1000) is larger
than p0 and disordered if p < p0 in the final state; see Fig. 17.
Typically we find also a decreasing trend of p at the end of the
observation time if p < p0 and an increasing trend if p > p0.

034604-13



RÜDIGER KÜRSTEN AND THOMAS IHLE PHYSICAL REVIEW E 104, 034604 (2021)

FIG. 16. Fluctuations of the polar order parameter p, measured
in agent-based simulations. The maximum at σ = 0.53 indicates the
onset of collective motion. Parameters are as decribed in the caption
of Fig. 15.

FIG. 17. Polar order parameter p obtained with ring-kinetic
theory. The system was initiated without correlations and with a
minimal polar order of p0 = 2π × 10−6 ≈ 6.3 × 10−6. The graph
shows the polar order after a waiting time of T = 250. Far in the
disordered regime the system is already in steady state after this
time, that means the correlations are stationary. However, close to
the transition and also in the polarly ordered regime the systems
needs much longer to become stationary. In particular at small noise,
the polar order is still much below its steady state value. Therefore,
we estimate the transition by a numerical stability analysis of the
disordered state: we consider the system as disordered if the polar
order parameter after time T is below its initial value p0. In that
case we typically observe that the polar order parameter is still
decreasing at the end of the observation time. However, we consider
the system as ordered when the final value p is larger than p0. In
that case we also typically observe that p is still increasing at the
end of the observation time. The transition noise strength between
polar order and disorder is displayed as the blue vertical dashed line
at σ = 0.505. The black and purple vertical dashed lines show the
transition noise strengths obtained in agent-based simulations and in
mean-field theory, respectively. Parameters are as described in the
caption of Fig. 15.

FIG. 18. Radial distribution function g(r) obtained from ring-
kinetic theory (blue solid line) and sampled directly from agent-
based simulations according to Eq. (56) (black solid line) for σ =
0.58 shortly before the onset of flocking. Other parameters are as
described in the caption of Fig. 3.

In that way, the ring-kinetic theory predicts the flocking tran-
sition at σc,rk = 0.575(5). This result is an improvement over
mean field for the given system size. Furthermore, it coincides
within the measurement uncertainty with the transition noise
strength for large systems. Within the ring-kinetic theory we
employed the limit N → ∞ to derive the time evolution equa-
tions. However, we solve the ring-kinetic equations on a finite
domain, which can in principle introduce a finite size effect.
Here, however, the pair correlation functions decay to zero
at distances much smaller than the considered system sizes;
see Fig. 18. Thus, we can expect the ring-kinetic theory to
resemble large systems.

Similar to phase transitions in equilibrium spin systems,
correlations shift the flocking transition toward smaller noise,
compared to mean-field theory. That means correlations favor
disorder. This can be understood qualitatively as follows. If
we consider a particle that moves not in the direction of the
majority, then without correlations it would be convinced to
join the majority due to interactions with other particles (that
on average behave as the majority). If correlations are present,
then the interaction partners can have the same direction as
the considered particle (different from the majority) due to
correlations. That means a particle that is oriented differently
from the global average, is likely to be accompanied by other
particles that differ from the global average if strong angular
correlations are present. This correlation effect weakens the
alignment mechanism compared to mean field.

To confirm the applicability of the ring-kinetic theory, we
apply it also at different densities. We formally assumed the
limit N → ∞ in the derivation of the kinetic equations, in
particular in the distribution of the number particles within
a circle. For small densities we require large systems to obtain
reasonably large particle numbers N . However, for those large
systems the numerical solution of the ring-kinetic equations
becomes computationally to expensive with the Fourier tech-
niques we are using. Therefore, we focus on larger densities
C1 = 3 and C1 = 5. For those parameters, the ring-kinetic
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theory becomes unstable when approaching the flocking tran-
sition. The reason is that the distribution of the number of
particles within a circle [Eq. (49)] becomes unphysical, pro-
ducing negative probabilities when C2 approaches C1. This
artefact is caused by the fact that in reality, higher-order cor-
relations have to be taken into account to predict the correct
distribution of the number of particles within a circle. Ignoring
them can lead to negative prefactors wk in the ring-kinetic
Eqs. (44) and that make the equation unstable. To fix this
problem we require some information about higher-order cor-
relations, such that a reasonable (physical) distribution of the
number of particles within a circle can be used. In particular
we need the local integrals over the correlation functions:

Ck := Nk
∫

Gk (1, ..., k)
k∏

l=1

θ (R − |rl |) dl. (60)

Other relevant quantities that affect the number of neighbor
distribution are

Dk := Nk−1
∫

Gk (1, 2, . . . , k) d1
k∏

l=2

θ (R − |r1 − rl |) dl;

(61)

see Ref. [30] for details. We are estimating the next order
coefficients C3 and D3 using a closure ansatz presented in the
next section.

VII. CLOSURE RELATION

To obtain an estimate for the three-particle correlation
function G3 we employ the closure ansatz

P3(1, 2, 3) =�(1, 2)�(2, 3) + �(1, 3)�(2, 3)

+ �(1, 3)�(1, 2), (62)

where �(1, 2) is a symmetric function

�(1, 2) = �(2, 1) (63)

that satisfies ∫
d2�(1, 2) = � = const. (64)

We assume furthermore that �(1, 2) is translational invariant.
Similar closures have been used in astronomy and plasma
physics; see, e.g., Refs. [45–47]. Here, the ansatz is motivated
by the limit of small noise. There, nearby particles are strongly
aligned. If particle one is aligned with particle two and particle
two is aligned with particle three, then particle one will be
also aligned with particle three. For finite noise however, the
quality of the ansatz is not evident a priori. It can be justified
only when it leads to reasonable results.

Integrating Eq. (62) over all degrees of freedom fixes � as

� = 1

L
√

6π
. (65)

Integrating Eq. (62) over the degrees of freedom of particle
three leads to

�(1, 2) = L
√

6π

2
[P2(1, 2) −

∫
d3�(1, 3)�(2, 3)]. (66)

FIG. 19. Local spatial three-particle correlation parameters C3

(a) and D3 (b) as defined in Eq. (46) compared for direct simulations
(black line) and a kinetic theory including a g3-closure (red line). The
dashed vertical lines shows the onset of flocking measured in direct
simulations (black), in the ring-kinetic theory (blue), ring-kinetic
theory with closure (red), in mean-field theory (purple) and measured
in . [30] for much larger systems (black dotted). System parameters
are as described in the caption of Fig. 15.

For a given P2 we can iterate this equation to solve for �.
Starting with the initial guess �0 = const. = 1√

32πL2 , the it-
erative procedure converges very fast, usually within one or
two iterations. Having solved for �, we obtain P3 from the
ansatz Eq. (62) and G3 according to Eq. (30). In principle,
we could calculate an additional collision term with G3 in
the kinetic equation of g2 Eq. . Here, however, we neglect
this term, assuming that the angular dependence of G3 is
sufficiently small. We consider only the effect of G3 on the
number of neighbor distribution. That means we calculate C3

and D3 according to Eqs. (60) and (61) and use the number of
neighbor distribution of Ref. [30] to calculate the prefactors in
the kinetic Eqs. (44) and .

Considering the parameters of Sec. VI, with density C1 = 1
we compare the measured values of the three-particle correla-
tion parameters C3 and D3 with the results of the kinetic theory
in Fig. 19. For large noise, the relative difference between
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FIG. 20. Spatial pair correlation parameters C2 (a) and D2 (b) and
three-particle correlation parameters C3 (c) and D3 (d) measured in
agent-based simulations (black line), within pure ring-kinetic theory
(blue line) and within kinetic theory including a three-particle closure
(red line). The vertical dashed lines display the onset of flocking
in kinetic theory with closure at σc,closure = 0.755 (red), agent-based
simulations at σc,sim = 0.71 (black) and mean-field theory at σc,mf =
0.827 (purple). System parameters are C1 = ρπR2 = 3, v = R = 1,
N = 300. For comparison we give also the measured flocking tran-
sition in the thermodynamic limit σc,sim,N→∞ = 0.75 (dotted black
line) obtained for N = 104 in Ref. [30].

theory and simulation is large. As discussed above, the closure
ansatz Eq. (62) is motivated mainly for strong alignment.
Thus, we do not expect that it works well for large noise. How-
ever, in that case the influence of three-particle correlations is
negligible any way. For smaller noise, coming closer to the
flocking transition, the closure becomes better and agrees very
well with the direct simulations. Even closer to the transition,
the closure clearly underestimates the correlations. However,
the agreement is satisfactory almost up to the transition. The
introduction of the closure relations also improves the agree-
ment of pair correlations with the simulation, cf. Fig. 15.
Furthermore, the prediction of the transition noise strength
is further improved to σc,closure = 0.525(5). It agrees with the
value from direct simulations within the reached uncertainty.

A. Density dependence

For larger densities C1 = 3 and C1 = 5 we find similar
results. The pair correlations predicted by the kinetic theory
agree within about 10% with the direct simulations as long
as the kinetic theory is stable; cf. Figs. 20(a) and 20(b) and
Figs. 21(a) and 21(b). Also the three-particle correlations
predicted by the closure ansatz have the correct order of mag-
nitude; see Figs. 20(c) and 20(d) and Figs. 21(c) and 21(d). As
discussed above, the closure ansatz is designed for aligning
particles and not for strong noise. Thus, far in the disordered
regime, the pure ring-kinetic treatment outperforms the ki-
netic theory with three-particle closure.

For C1 = 3 we find the transition noise strength at
σc,closure = 0.755(5) compared to the value measured in direct

FIG. 21. Spatial pair correlation parameters C2 (a) and D2 (b) and
three-particle correlation parameters C3 (c) and D3 (d) measured in
agent-based simulations (black line), within pure ring-kinetic theory
(blue line) and within kinetic theory including a three-particle closure
(red line). The vertical dashed lines display the onset of flocking in
agent-based simulations at σc,sim = 0.79 (black) and mean-field the-
ory at σc,mf = 0.895 (purple). System parameters are C1 = ρπR2 =
5, v = R = 1, N = 500. For comparison we give also the measured
flocking transition in the thermodynamic limit σc,sim,N→∞ = 0.81
(dotted black line) obtained for N = 104 in Ref. [30].

simulations for N = 300 σc,sim = 0.71(1), for N = 10 000
σc,sim,N→∞ = 0.75(1) [30] and the mean-field value σc,mf =
0.827. For C1 = 5 the kinetic theory breaks down shortly
above the transition because pair and three-particle corre-
lations are no longer sufficient to reproduce the correct
distribution of the number of particles within a circle. In-
stead, unphysical, negative probabilities are produced when
higher-order correlations are neglected, similar to the pure
ring-kinetic treatment at C1 = 3. The transition measured is
for N = 500 σc,sim = 0.79(1), for N = 10 000 σc,sim,N→∞ =
0.81(1) [30] and the mean-field value is σc,mf = 0.895. Al-
though the kinetic theory breaks down shortly before the
onset of flocking, the predicted two-particle correlations are
still very close to the measured values and the three-particle
correlations have the correct order of magnitude. In summary,
we find that the role of three-particle correlations increases
for larger densities at the flocking transition. Therefore, one
expects that also higher-order correlations become important.
This explains that deviations between theory and agent-based
simulations increase for large densities. Nevertheless, we still
find satisfactory quantitative agreement with the simulations
at C1 = 3. The introduction of a closure relation for spatial
three-particle correlations enlarged the parameter region of
applicability of the kinetic theory significantly compared to
the pure ring-kinetic theory without closure.

B. Velocity dependence

We study the parameter set of Fig. 15 at C1 = ρπR2 = 1
for different velocities. For a smaller velocity of v = 0.5 we
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FIG. 22. Spatial pair correlation parameters C2 (a) and D2 (b) and
three particle correlation parameters C3 (c) and D3 (d) measured in
agent-based simulations (black line), within pure ring-kinetic theory
(blue line) and within kinetic theory including a three particle closure
(red line). The vertical dashed lines display the onset of flocking in
ring-kinetic theory σc,rk = 0.575 (red), kinetic theory with closure at
σc,closure = 0.575 (red), agent-based simulations at σc,sim = 0.49 for
N = 509 (dashed black), for N = 10 000 (dotted black) and mean-
field theory at σc,mf = 0.607 (purple). Sytem parameters are C1 =
ρπR2 = 1, v = 0.5, R = 1, N = 509.

find larger correlations; see Fig. 22. This is expected because
particles have more time to interact and align at smaller ve-
locities. The predictions of the pure ring-kinetic theory do not
agree as well as for v = 1 similar as for larger densities. These
deviations are very likely caused by higher-order correlations
that need to be taken into account. As for larger densities,
the ring-kinetic theory is unstable for small noise strengths
and the description breaks down already above the flocking
transition as soon as C2 = C1. Including the closure improves
the kinetic theory significantly and extends its range of ap-
plicability. However, there are significant deviations of pair
and three-particle correlations when the flocking transition
is approached. Nevertheless, the flocking transition predicted
by our kinetic theory is a clear improvement compared to
mean-field theory.

For a larger velocity, v = 1.5 we find smaller spatial corre-
lations as expected; see Fig. 23. The spatial pair correlations
agree also very well between ring-kinetic theory and agent-
based simulations almost until the onset of flocking. Here,
the ring-kinetic theory is stable and predicts the flocking the
transition at slightly too small noise. The closure improves the
results only marginally. In principle, we would expect better
agreement due to the smaller correlations. However, only the
pure spatial correlations decrease for larger velocities, but the
angular correlations increase because particles can only stay
close to each other for a long time if they are aligned at high
velocities. For even larger velocity (e.g., v = 2) we observe
very strong angular correlations that suppress the onset of
flocking. That means we find no onset of flocking within
the ring-kinetic theory (with or without closure) although the

FIG. 23. Spatial pair correlation parameters C2 (a) and D2 (b) and
three particle correlation parameters C3 (c) and D3 (d) measured in
agent-based simulations (black line), within pure ring-kinetic theory
(blue line) and within kinetic theory including a three particle closure
(red line). The vertical dashed lines display the onset of flocking in
pure ring-kinetic theory at σc,rk = 0.575 (blue), kinetic theory with
closure at σc,closure = 0.575 (red), agent-based simulations at σc,sim =
0.55 for N = 509 (dashed black), for N = 10 000 (dotted black) and
mean-field theory at σc,mf = 0.607 (purple). System parameters are
C1 = ρπR2 = 1, v = 1.5, R = 1, N = 509.

spatial correlations are predicted reasonably well. We believe
that higher-order angular correlations need to be taken into
account for high velocities. The next step in this direction will
be the incorporation of g3-collision integrals into Eq. , where
g3 is still determined by the closure Eq. (62).

VIII. COMPARISON BETWEEN FULL RING-KINETIC
THEORY AND LANDAU KINETIC THEORY

The Landau theory of Ref. [29] considers the model with
additive interactions, w(n) ≡ 1. Here, we adopt the theory to
the case of nonadditive interactions, w(n) = 1/n to compare
it with the present approach. The equivalent of Eq. (17) of
Ref. [29] is in our notation

(67)

That is, compared to Eq. , all collision integrals on the right-
hand side that contain g2 are neglected because g2 and the
coupling constant are both assumed to be small. Furthermore,
the angular diffusion term σ 2

2 (∂2
φ1

+ ∂2
φ2

)g2(φ1, φ2,�) is ne-
glected because both, σ 2 and g2, are assumed to be small.
However, we could not make sense out of Eq. (67) without
the angular diffusion term. Intuitively, it is clear that the cor-
relations are going to diverge according to Eq. (67) because
there is a source term but no damping term. In fact, we find
indeed a diverging g2 if we integrate Eq. (67) numerically in
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FIG. 24. Radial distribution function g(r) obtained from agent-
based simulations (black line), ring-kinetic theory (blue line, almost
hidden below the red line), kinetic theory with closure (red line) and
Landau-kinetic theory according to Eq. (68) (purple line). In panel
(a) we used the parameters described in the caption of Fig. 3; in panel
(b) the noise is smaller σ = 0.6 but still in the disordered phase, other
parameters are the same.

Fourier space. Furthermore, we do not see how the principal
problem of diverging g2 can be prevented in any parameter
limit if the noise term is neglected. Therefore, we did not
neglect the angular diffusion and considered instead the time
evolution equation

+ v(cos φ1 − cos φ2)∂�x g2(φ1, φ2,�)

+ v(sin φ1 − sin φ2)∂�y g2(φ1, φ2,�)

+ σ 2

2
(∂2

φ1
+ ∂2

φ2
)g2(φ1, φ2,�). (68)

In Fig. 24(a) we show the pair correlation function g(r) ob-
tained from the Landau kinetic theory (purple line) compared
to the results of the full ring-kinetic theory (blue line) and
direct agent-based simulations (black line) for the parameters
of Fig. 3 far in the disordered phase at σ = 1.5 (the flocking

transition occurs at σ = 0.53). We find that the qualitative
behavior of the pair correlation function is predicted correctly,
but it is too small by about 20%. We expect that the results
of the Landau kinetic theory improve if much larger noise
strengths are considered. In that case however, the correlations
decrease and become less important.

In Fig. 24(b) we display the pair correlation function for
the same parameters but smaller noise, σ = 0.6. The system is
still disordered but closer to the flocking transition. We added
also the curve of our kinetic theory including a three-particle
closure (red line). Here, we see that the Landau theory is off by
more than 50%, the ring-kinetic theory agrees quantitatively
very well with the agent-based simulations. We conclude that
the simplified Landau kinetic theory of Ref. [29] is a good
approximation far in the disordered regime. However, it is not
suitable to describe the system in the vicinity of the flocking
transition.

IX. DISCUSSION

We consider polarly aligning self-propelled point particles
in two dimensions. The investigated models are in the spirit of
the famous Vicsek models. However, they follow a continuous
time dynamics given by a system of Langevin equations. For
technical reasons it would be desirable to introduce only pair
interactions. But in that case the model behaves qualitatively
different from the Vicsek model: in the ordered phase, no
bands or cross sea patterns are observed. Instead, strongly
aligned high density clusters are formed.

To observe a behavior qualitatively equivalent to the Vicsek
model, we need to introduce N-particle-, that is nonadditive
interactions as pointed out recently in Refs. [39,40].

The presence of N-particle interactions seriously compli-
cates matters. As a consequence, the kinetic equations contain
weight factors that are expectation values of the distribution
of the number of particles within a circle. It was discovered
recently how this distribution can be calculated exactly even
in the presence of many particle correlations [30]. Employing
this predecessor work, we were able to handle the com-
plications arising from the nonadditive interactions. From a
technical point of view, the incorporation of N-particle inter-
actions into ring-kinetic theories is a significant development
that can be of interest also for other (possibly passive) systems
with interactions of this type.

Truncating the BBGKY-hierarchy after the second equa-
tion we obtain the time evolution equations for the one-
particle distribution and the pair correlation function, ne-
glecting higher-order correlations. We solve those equations
numerically, transforming both spatial and angular depen-
dence to Fourier space. We compare the resulting steady states
with direct, agent-based simulations of the Langevin equa-
tions. In the disordered phase and not too close to the onset
of flocking, we find excellent agreement between ring-kinetic
theory and direct simulations.

Reducing the noise strength, we find the onset of flocking
in the ring-kinetic theory. Compared to the homogeneous
mean-field theory, the transition is shifted toward smaller
noise. This shift is caused by positive angular pair correlations
that stabilize the disordered phase. The same effect is seen in
direct simulations. For C1 = ρπR2 = 1 we find good quanti-
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tative agreement of the onset of flocking between ring-kinetic
theory and agent-based simulations of large systems. For
larger densities, close to the onset of flocking, the ring-kinetic
equations become unstable because the weights depending on
the distribution of the number of particles within a circle are
predicted wrong by the ring-kinetic theory. This is not too
surprising as it is known that higher-order correlations are
required to predict the correct distribution of the number of
particles within a circle and thus the correct weights within
the ring-kinetic equations [30].

To enlarge the applicability of the kinetic theory we in-
troduce a closure ansatz. With that relation we calculate the
three-particle correlation function g3 from the single particle
distribution and the pair correlations. In this work, we do
not consider the full effect of the three-particle correlations,
but only its influence on the distribution of the number of
particles within a circle and hence on the weights in the kinetic
equations. Phrased differently, we consider only the effect of
three-particle correlations on the spatial distribution and we
neglect angular three-particle correlations that are entering the
kinetic equations by additional collision integrals.

Far in the disordered phase, for large noise, the closure
ansatz does not agree very well with direct simulations. How-
ever, in that region three-particle correlations can be ignored
as discussed above. At about the onset of flocking, the clo-
sure ansatz for the spatial three-particle correlations agrees
within about 20% with direct simulations. That means it is
a considerable improvement compared to the neglect of those
correlations. Furthermore, the introduction of the closure sig-
nificantly enlarges the parameter regime where spatial pair
correlations agree quantitatively with direct simulations.

Employing the closure ansatz we are able to describe
the onset of flocking within kinetic theory also for larger
densities such as C1 = ρπR2 = 3 where the onset of flock-
ing agrees quantitatively with the measured value for large
systems within measurement uncertainty. In comparison, the
deviations of the transition noise in mean-field theory are 16%
and 13%, respectively.

We also consider the dependence on the particle velocity
and find good agreement between ring-kinetic theory and
simulations at large noise for all considered velocities. Close
to the onset of flocking, small velocities increase in particular
spatial correlation, whereas high velocities suppress spatial
correlations but favor angular correlations. This is intuitive
because at high speed, particles remain close to each other for
long times only if they have roughly the same velocity, and
for small velocities, particles that interact have a long time to
align. Both effects lead to deviations of the predicted onset
of flocking in the kinetic theory with three-particle closure.
However, the results of the kinetic theory are still a major im-
provement over mean-field theory. There is further potential
to improve the theory for high velocities by incorporating g3

collision integrals in the g2 equation by means of the presented
closure ansatz.

In general, it can be seen that the ring-kinetic theory
(possibly extended by a closure relation estimating g3) gives
quantitatively good results as long as higher-order correlations
are not too large. Far in the disordered phase (for large noise),
this is always the case. Close to the flocking transition we
observe larger spatial correlations for higher particle densities
or small velocities and large angular correlations for high
velocities.
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APPENDIX A: TIME EVOLUTION EQUATIONS

The explicit expression for the time evolution equation of
the one-particle angular distribution Eq. (44) reads

∂t p(φ1) = − ρw2∂φ1

∫
sin(φ2 − φ1)[g2(φ1, φ2,�) + p(φ1)p(φ2)]θ (R − |�|) dφ2 d� − ρ2[w3 − w2]∂φ1

×
{ ∫

sin(φ2 − φ1)p(φ1)g2(φ2, φ3, �̃)θ (R − |�|)θ (R − |� + �̃|) d� d�̃ dφ2 dφ3

+
∫

sin(φ2 − φ1)p(φ2)g2(φ1, φ3,� + �̃)θ (R − |�|)θ (R − |� + �̃|) d� d�̃ dφ2 dφ3

}
− ρ3[w4 − 2w3 + w2]∂φ1

×
{ ∫

sin(φ2 − φ1)g2(φ1, φ3,�13)g2(φ2, φ4,�24)θ12θ13θ14 d2 d3 d4

}
+ σ 2

2
∂2
φ1

p(φ1). (A1)

Similar, one finds for the time evolution equation of the pair correlation function Eq.

∂t g2(φ1, φ2,�) = − w2∂φ1θ12 sin(φ2 − φ1)[g2(φ1, φ2,�) + p(φ1)p(φ2)]

− θ12ρ(w3 − w2)∂φ1

∫
d3θ13 sin(φ2 − φ1)p(φ2)g2(φ1, φ3,�13)

− θ12ρ(w3 − w2)∂φ1

∫
d3θ13 sin(φ2 − φ1)p(φ1)g2(φ2, φ3,�23)

− θ12ρ
2(w4 − 2w3 + w2)∂φ1

∫
d3 d4θ13θ14 sin(φ2 − φ1)g2(φ1, φ3,�13)g2(φ2, φ4,�24)
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− θ12

{
ρw3∂φ1

∫
d3θ13 sin(φ3 − φ1)[p(φ1)g2(φ2, φ3,�23) + p(φ3)g2(φ1, φ2,�12)]

+ ρ[w3 − w2]∂φ1

∫
d3θ13 sin(φ3 − φ1)[p(φ1)p(φ2)p(φ3) + p(φ2)g2(φ1, φ3,�13)]

+ ρ2[w4 − w3]∂φ1

∫
sin(φ3 − φ1) d3 d4θ13θ14[g2(φ1, φ2,�12)g2(φ3, φ4,�34)

+ g2(φ1, φ4,�14)g2(φ2, φ3,�23) + g2(φ1, φ3,�13)g2(φ2, φ4,�24) + p(φ1)p(φ3)g2(φ2, φ4,�24)]

+ ρ2[w4 − 2w3 + w2]∂φ1

∫
sin(φ3 − φ1) d3 d4θ13θ14

× [+p(φ1)p(φ2)g2(φ3, φ4,�34) + p(φ2)p(φ3)g2(φ1, φ4,�14)] + ρ3[w5 − 2w4 + w3]

× ∂φ1

∫
sin(φ3 − φ1) d3 d4 d5θ13θ14θ15[g2(φ1, φ4,�14)g2(φ2, φ5,�25)p(φ3)

+ p(φ1)g2(φ2, φ4,�24)g2(φ3, φ5,�35)] + ρ3[w5 − 3w4 + 3w3 − w2]

× ∂φ1

∫
sin(φ3 − φ1) d3 d4 d5θ13θ14θ15g2(φ1, φ4,�14)p(φ2)g2(φ3, φ5,�35)

+ ρ4[w6 − 3w5 + 3w4 − w3]∂φ1

∫
sin(φ3 − φ1) d3 d4 d5 d6θ13θ14θ15θ16g2(φ1, φ4,�14)

× g2(φ2, φ5,�25)g2(φ3, φ6,�36)

}
− (1 − θ12)

{
ρw2∂φ1

∫
d3θ13 sin(φ3 − φ1)

× [p(φ1)g2(φ2, φ3,�23) + p(φ3)g2(φ1, φ2,�12)]

+ ρ2[w3 − w2]∂φ1

∫
sin(φ3 − φ1) d3 d4θ13θ14[g2(φ1, φ2,�12)g2(φ3, φ4,�34)

+ g2(φ1, φ4,�14)g2(φ2, φ3,�23) + g2(φ1, φ3,�13)g2(φ2, φ4,�24) + p(φ1)p(φ3)g2(φ2, φ4,�24)]

+ ρ3[w4 − 2w3 + w2]∂φ1

∫
sin(φ3 − φ1) d3 d4 d5

× θ13θ14θ15[g2(φ1, φ4,�14)g2(φ2, φ5,�25)p(φ3) + p(φ1)g2(φ2, φ4,�24)g2(φ3, φ5,�35)]

+ ρ4[w5 − 3w4 + 3w3 − w2]∂φ1

∫
sin(φ3 − φ1) d3 d4 d5 d6θ13θ14θ15θ16g2(φ1, φ4,�14)

× g2(φ2, φ5,�25)g2(φ3, φ6,�36)

}
+ 1 ↔ 2,

− v[cos(φ1) − cos(φ2)]∂�x g2(φ1, φ2,�) − v[sin(φ1) − sin(φ2)]∂�y g2(φ1, φ2,�)

+ σ 2

2

(
∂2
φ1

+ ∂2
φ2

)
g2(φ1, φ2,�), (A2)

where +1 ↔ 2 means that all terms above are added with
indexes one and two interchanged.

APPENDIX B: FOURIER TRANSFORM

1. Time evolution equations

We solve the time evolution Eqs. (44) and (51) numerically
in Fourier space, transforming both spatial and angular coordi-
nates. This has the huge advantage that all appearing integrals
(also high-dimensional ones) can be solved analytically. We

employ the following Fourier ansatz for the one-particle dis-
tribution and the pair correlation function:

p(φ) =
∑

k

Ak exp(ikφ), (B1)

g2(φ1, φ2,�) =
∑

k,l,m,n

Fk,l,m,n exp(ikφ1) exp(ilφ2)

× exp(im�x2π/L) exp(in�y2π/L). (B2)

The number of neighbor distribution that determines the
weights in Eqs. (44) and (51) is known analytically up to a dis-
crete Fourier transform [30]. It depends only on the integrals
Eq. (46) when three-particle and higher-order correlations are
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neglected. Those integrals can be evaluated in Fourier space.
It is useful to introduce the abbreviations

Km,n := 1

L2

∫ L/2

−L/2

∫ L/2

−L/2
eim 2π

L xein 2π
L y

× θ (R − |x|) dx dy

= R

L
√

m2 + n2

× J1

(2π

L
R
√

m2 + n2
)
, (B3)

Q±
klmn :=

∑
s,t

Fklst Km±s,n±t , (B4)

and

R±
klmn :=

∑
s,t

Fklst Km±s,n±t Ks,t , (B5)

where J1 is the Bessel function of the first kind. With those
abbreviations one obtains

C2 =4π2N2R+
0000, (B6)

D2 =4π2NQ+
0000. (B7)

Thus, with the results of Ref. [30], the weights in Eqs. (44) and
(51) can be expressed explicitly in terms of the Fourier modes
Fklmn. Fourier transforming those time evolution equations
results in

∂t Ak = Nw2kπ (Q+
k−1,1,0,0 − Q+

k+1,−1,0,0)

+ C1w2kπ (Ak−1A1 − Ak+1A−1)

+ N22π2k(w3 − w2)(Ak−1R+
1,0,0,0 − Ak+1R+

−1,0,0,0)

+ C1N2π2k(w3 − w2)(A1Q+
k−1,0,0,0 − A−1Q+

k+1,0,0,0)

+ N34π3k(w4 − 2w3 + w2)

× (Q+
k−1,0,0,0R+

1,0,0,0 − Q+
k+1,0,0,0R+

−1,0,0,0)

− σ 2

2
k2Ak (B8)

and

∂t Fklmn =
39∑

i=1

i© + {k ↔ l, m ↔ −m, n ↔ −n}, (B9)

where the terms i© are given by

1© = w2
k

2
(Q−

k−1,l+1,m,n − Q−
k+1,l−1,m,n), (B10)

2© = w2
k

2
Kmn(Ak−1Al+1 − Ak+1Al−1), (B11)

3© = Nπ (w3 − w2)kKmn

× (Q+
k−1,0,0,0Al+1 − Q+

k+1,0,0,0Al−1), (B12)
4© = Nπ (w3 − w2)k

×(R+
l+1,0,m,nAk−1 − R+

l−1,0,m,nAk+1), (B13)

5© = N22π2(w4 − 2w3 + w2)k

×(R+
l+1,0,m,nQ+

k−1,0,0,0 − R+
l−1,0,m,nQ+

k+1,0,0,0), (B14)

6© = Nkw3π (Ak−1R+
l,1,m,n − Ak+1R+

l,−1,m,n), (B15)

7© = C1πkw3(Q−
k−1,l,m,nA1 − Q−

k+1,l,m,nA−1), (B16)

8© = Nπk(w3 − w2)KmnAl (Q
+
k−1,1,0,0 − Q+

k+1,−1,0,0), (B17)

9© = N2(w4 − w3)k2π2

× (Q−
k−1,l,m,nR+

1,0,0,0 − Q−
k+1,l,m,nR+

−1,0,0,0), (B18)

10© = N2(w4 − w3)2π2k

× (R+
l,1,m,nQ+

k−1,0,0,0 − R+
l,−1,m,nQ+

k+1,0,0,0), (B19)

11© = N2(w4 − w3)k2π2

× R+
l,0,m,n(Q+

k−1,1,0,0 − Q+
k+1,−1,0,0), (B20)

12© =C1N (w4 − w3)k2π2

× R+
l,0,m,n(Ak−1A1 − Ak+1A−1), (B21)

13© = N2(w4 − 2w3 + w2)k2π2AlKmn

× (Ak−1R+
1,0,0,0 − Ak+1R+

−1,0,0,0), (B22)

14© =C1Nk2π2(w4 − 2w3 + w2)AlKmn

× (Q+
k−1,0,0,0A1 − Q+

k+1,0,0,0A−1), (B23)

15© = N2C14π3k(w5 − 2w4 + w3)R+
l,0,m,n

× (Q+
k−1,0,0,0A1 − Q+

k+1,0,0,0A−1), (B24)

16© = N3k4π3(w5 − 2w4 + w3)R+
l,0,m,n

× (Ak−1R+
1,0,0,0 − Ak+1R+

−1,0,0,0), (B25)

17© = N3k4π3(w5 − 3w4 + 3w3 − w2)KmnAl

× (Q+
k−1,0,0,0R+

1,0,0,0 − Q+
k+1,0,0,0R+

−1,0,0,0, (B26)

18© = N48π4k(w6 − 3w5 + 3w4 − w3)R+
l,0,m,n

× (Q+
k−1,0,0,0R+

1,0,0,0 − Q+
k+1,0,0,0R+

−1,0,0,0), (B27)

19© = Nkπw2Kmn

× (Ak−1Fl,1,−m,−n − Ak+1Fl,−1,−m,−n), (B28)

20© = − Nkπw2(Ak−1R+
l,1,m,n − Ak+1R+

l,−1,m,n) (B29)

21© =C1w2kπ (Fk−1,l,m,nA1 − Fk+1,l,m,nA−1), (B30)

22© = −C1w2kπ (Q−
k−1,l,m,nA1 − Q−

k+1,l,m,nA−1), (B31)

23© = N22π2k(w3 − w2)

× (R+
1,0,0,0Fk−1,l,m,n − R+

−1,0,0,0Fk+1,l,m,n), (B32)
24© = − N22π2k(w3 − w2)

× (Q−
k−1,l,m,nR+

1,0,0,0 − Q−
k+1,l,m,nR+

−1,0,0,0), (B33)

25© = N2k2π2(w3 − w2)Kmn

× (Q+
k−1,0,0,0Fl,1,−m,−n − Q+

k+1,0,0,0Fl,−1,−m,−n), (B34)
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26© = − N2k2π2(w3 − w2)

× (Q+
k−1,0,0,0R+

l,1,m,n − Q+
k+1,0,0,0R+

l,−1,m,n), (B35)

27© = N2k2π2(w3 − w2)Kmn

× Fl,0,−m,−n(Q+
k−1,1,0,0 − Q+

k+1,−1,0,0), (B36)

28© = − N2k2π2(w3 − w2)R+
l,0,m,n

× (Q+
k−1,1,0,0 − Q+

k+1,−1,0,0), (B37)

29© =C1Nk2π2(w3 − w2)Kmn

× Fl,0,−m,−n(Ak−1A1 − Ak+1A−1), (B38)

30© = − C1Nk2π2(w3 − w2)

× R+
l,0,m,n(Ak−1A1 − Ak+1A−1), (B39)

31© =C1N2k4π3(w4 − 2w3 + w2)Kmn

× Fl,0,−m,−n(Q+
k−1,0,0,0A1 − Q+

k+1,0,0,0A−1), (B40)
32© − C1N2k4π3(w4 − 2w3 + w2)

× R+
l,0,m,n(Q+

k−1,0,0,0A1 − Q+
k+1,0,0,0A−1), (B41)

33© = N3k4π3(w2 − 2w3 + w2)Kmn

× Fl,0,−m,−n(Ak−1R+
1,0,0,0 − Ak+1R+

−1,0,0,0), (B42)

34© = − N3k4π3(w2 − 2w3 + w2)

× R+
l,0,m,n(Ak−1R+

1,0,0,0 − Ak+1R+
−1,0,0,0), (B43)

35© = N4k8π4(w5 − 3w4 + 3w3 − w2)Fl,0,−m,−n

× Kmn(Q+
k−1,0,0,0R+

1,0,0,0 − Q+
k+1,0,0,0R+

−1,0,0,0), (B44)

36© = − N4k8π4(w5 − 3w4 + 3w3 − w2)R+
l,0,m,n

× (Q+
k−1,0,0,0R+

1,0,0,0 − Q+
k+1,0,0,0R+

−1,0,0,0), (B45)

37© = vm
iπ

L
(Fk−1,l,m,n + Fk+1,l,m,n), (B46)

38© = vn
π

L
(Fk−1,l,m,n − Fk+1,l,m,n), (B47)

39© = −σ 2

2
k2Fklmn, (B48)

and {k ↔ l, m ↔ −m, n ↔ −n} refers to the same terms but
with k and l , m and −m, n and −n interchanged, respectively.

2. Closure relation

To evaluate the closure ansatz Eq. (62) we consider the function � in Fourier space

�(φ1, φ2,�) =
∑
klmn

Uklmn exp(ikφ1) × exp(ilφ2) exp(im�x2π/L) exp(in�y2π/L). (B49)

It is reasonable to consider scaled modes

ustuv = L3Ustuv. (B50)

From Eqs. (64) and (65) it follows that

us000 = δs,0u0000 = δs,0
L�

2π
= δs,0

1

2π
√

6π
. (B51)

Fourier transforming the iteration Eq. (66) we obtain

uklmn = 1

2u0000

[
1

8π3
δk,0δl,0δm,0δn,0 −

∑
s

uksmnu−slmn + 1

2π
Fklmn

]
. (B52)

Note that this equation is compatible with the normalization condition Eq. (B51). In practice, we start with uklmn = 0 except
for u0000 that is given by Eq. (B51). Then we iterate Eq. (B52) to calculate uklmn, that is the closure ansatz function �. In the
parameter regime we investigated, the recursion converges very fast. It almost reaches its fixed point already after two iterations.
We used five iterations after which we reach perfect convergence within our numerical accuracy.

Once � is known, the spatial three-particle correlation parameters C3 and D3 can be calculated via

C3 + 3C1C2 + C3
1 = N3

∫
P3(1, 2, 3) d1 d2 d3

= 3N3
∫

�(1, 2)�(2, 3)θ1θ2θ3 d1 d2 d3

= 3ρ3
∫

L6�(1, 2)�(2, 3)θ1θ2θ3 d1 d2 d3

= 3ρ3
∫ ∑

stuv

exp(isφ1) exp(itφ2) exp(iu(x2 − x1)2π/L)
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× exp(i(y2 − y1)2π/L)
∑
klmn

exp(ikφ2) exp(ilφ3)

× exp(im(x3 − x2)2π/L)

× exp(in(y3 − y2)2π/L)θ1θ2θ3 d1 d2 d3

= 3N3(2π )3
∑

tuvmn

u0,t,u,vu−t,0,m,nKu,vKu−m,v−nKm,n (B53)

and similar

D3 + 2D2C1 + C2 + C2
1 = N2

∫
θ12θ13G3(1, 2, 3) d1 d2 d3

= (2π )3N2
∑

lmnuv

u0lmnu−l0uvKm−u,n−vKu,v

+ (2π )3N2
∑

lmnuv

u0lmnu0−luvKm+u,n+vKu,v

+ (2π )3N2
∑

lmnuv

u−l0mnul0uvKm,nKu,v. (B54)

Note that C1 := N
L2 πR2 and D1 := 1 per definition.

In summary, the numerical time evolution works as follows. We calculate the pair correlation coefficients C2 and D2 according
to Eq. (B7). Next, we calculate the closure ansatz function with the iteration Eq. (B52) and then the three-particle correlation
coefficients C3 and D3 according to Eqs. (B53) and (B54). Having calculated the correlation coefficients we compute the
distribution of the number of particles in a circle depending on C2 and C3 according to Eq. (50), cf. also Ref. [30] for details.
With this distribution we obtain the weights wk according to Eq. (45). Given the weights we can eventually time evolve the time
evolution Eqs. (B8) and (B9) with a simple Euler scheme.

3. Comparison to agent-based simulations

The correlation functions g(r) and h(r, α,�φ) considered in Sec. VI can be sampled in agent-based simulations according to
Eqs. (56) and (59). However, these functions can be calculated from the Fourier modes of g2 according to

g(r) = 1 + 4π2
∑
m,n

F00mnJ0

(
2πr

L

√
m2 + n2

)
, (B55)

h(r, α,�φ) = (2π )2
∑
klmn

Fklmn exp(il�φ) exp[−i(k + l )α] ×
(

n − im√
n2 + m2

)k+l

J−(k+l )

(
2π

L
r
√

m2 + n2

)
. (B56)

Assuming rotational symmetry, it is also possible to revert Eq. (B55) that is to calculate the spatial Fourier modes F00mn from the
function g(r) according to

F00mn = 1

L22π

∫
[g(r) − 1]rJ0

(
2πr

L

√
m2 + n2

)
dr. (B57)

We use this relation to see the impact of the resolution in the Fourier transform on g(r) by Fourier transforming the measured
function according to Eq. (B57) and transforming it back according to Eq. (B55). In that way we achieved the green dashed line
in Fig. 3. The solid black line in this figure is a histogram of agent-based simulations according to Eq. (56) and the solid blue
line is calculated according to Eq. (B55), where the Fourier modes Fklmn are the result of the ring-kinetic theory.
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