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One class of random walks with infinite memory, so-called elephant random walks, are simple models de-
scribing anomalous diffusion. We present a surprising connection between these models and bond percolation on
random recursive trees. We use a coupling between the two models to translate results from elephant random walks
to the percolation process. We calculate, besides other quantities, exact expressions for the first and the second
moment of the root cluster size and of the number of nodes in child clusters of the first generation. We further in-
troduce another model, the skew elephant random walk, and calculate the first and second moment of this process.
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I. INTRODUCTION

Anomalous diffusion appears in many physical, biological,
and social systems. Examples are the traveling motion of
people or money [1], macromolecules in cytoplasma [2], the
motion on membranes [3], diffusion in porous materials [4],
and diffusion in polymer networks [5], to name only a few.
Theoretical models describing such phenomena often include
a fractal structure of space [6,7] or incorporate memory
effects [8–11].

The elephant random walk (ERW) introduced in [11] is one
of the simplest models leading to anomalous diffusion. Since
its appearance the ERW and several modifications of it (see,
e.g., Refs. [12–18]) have been the subject of intense research.
As we will demonstrate in this paper, there is a surprising
connection between ERW-like models and percolation on
random recursive trees (RRTs) that seems to be unknown in
the literature.

Random recursive trees appear naturally in Yule pro-
cesses [19]. There, an individual reproduces with a constant
rate. When a child is born, it evolves independently from its
ancestor and they both reproduce with the same rate. The
resulting genealogical tree is a random recursive tree. If the
possibility of mutations is taken into account in a simple way,
percolation clusters of random recursive trees are obtained
naturally as genealogical trees, assuming that with some fixed
probability a child forms a new species due to mutation.

Versions of Yule processes have been used to study the
distribution of words in prose samples, the distribution of
scientists by the number of papers, the distribution of cities
by population, and the distribution of income [20] and they
share certain features with scientific citation networks [21]
and preferential attachment models [22]. In recent years there
has been active research on bond percolation on random
recursive trees from a mathematical point of view (see, e.g.,
Refs. [23–25]). There have been also studies that deal with the
cutting of RRTs [26–28] and with fires on RRTs [29]. Also
fragmentation processes induced by deletion of edges [30] or
removal of vertices [31] are closely related to bond or site
percolation on RRTs.
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In this paper we use another formulation of the ERW model
that was first investigated in Ref. [17] without mentioning
the one-to-one equivalence [32] to the original model [11].
Furthermore, we develop and analyze a generalization of the
ERW, the skew elephant random walk (SERW), and we employ
another generalization of the ERW that was introduced and
analyzed in [13]. The ERW and alike models are understood
quite well and we can translate many results into the framework
of percolation on random recursive trees.

The paper is organized as follows. In Sec. II we introduce
the ERW model and discuss two ways to reformulate it. In
Sec. III we introduce the memory tree and memory forest
of the ERW as a stochastic coupling between the ERW
and percolation on RRTs. In Sec. IV we discuss in detail
the Bernoulli bond percolation on RRTs and calculate exact
expressions for expectation values of the root cluster size, of
the root cluster size squared, of the number of nodes in child
clusters of the kth generation, of the number of nodes in first
generation child clusters squared, of the probability of the root
to be isolated, and of the number of clusters of size one, using
results from the ERW, the SERW, or the process introduced
in [13]. In Sec. V we use the results of Sec. IV to obtain the
root cluster size in certain limiting cases that have been studied
in the literature. We prove the mean square convergence in
contrast to the weaker convergence in probability, proved
in [23,24], which makes our findings on the root cluster size
stronger than those previous results. In Sec. VI we discuss
how our findings on percolation on RRTs lead to a deeper
understanding of ERW-like models. The model introduced
in [13] can be reduced to an ERW with a random effective
time, which is the root cluster size of a percolation process
on a RRT. The appearance of superdiffusion in ERWs can
be explained by a single huge memory component of ERWs,
which is also equivalent to a root cluster of the percolation
process.

II. ELEPHANT RANDOM WALK

In order to make this paper self-contained we will review the
main results of Schütz and Trimper [11] in this section. They
introduced the elephant random walk. We will also mention
the formulation of Kim [17]. He reformulated the ERW model
for some parameter regime and reobtained the same results
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RÜDIGER KÜRSTEN PHYSICAL REVIEW E 93, 032111 (2016)

as in [11] with the same methods, but he did not mention the
one-to-one correspondence between the two models. We will
also introduce a reformulation similar to that used in [17],
covering the other parameter regime.

In [11] the ERW is introduced as follows. The elephant
starts at time t = 0 and position x0 = 0 and moves in discrete
time on the integers. We denote the position of the elephant at
time t by xt . In each time step the elephant moves a distance
σt . Hence, the elephant’s position satisfies

xt+1 = xt + σt+1, (1)

where σt are random variables, which can take one of the
values ±1.

In the first step the elephant may move right to x1 = +1,
that is, σ1 = +1 with probability q ∈ [0,1], or it moves left to
x1 = −1, that is, σ1 = −1 with probability 1 − q. At any later
time t a random number t ′ is chosen from {1, . . . ,t − 1} with
uniform probability 1/(t − 1). Then

σt+1 =
{

σt ′ with probability p̃

−σt ′ with probability 1 − p̃.
(2)

That means the elephant chooses some random time t ′ from
the past to remember. With probability p̃ it is doing the same as
in the past and with probability 1 − p̃ it is doing the opposite.

Using the abbreviations

α = 2p̃ − 1, β = 2q − 1, (3)

the first and the second moment have been calculated in [11]
resulting in

〈xt 〉 = β
�(α + t)

�(t)�(α + 1)
for t > 1, (4)

〈
x2

t

〉 = t

2α − 1

[
�(t + 2α)

�(t + 1)�(2α)
− 1

]
. (5)

Consider β = 0 for simplicity. Then the first moment is zero
〈xt 〉 = 0 and for large times the mean square displacement is
approximately [11]

〈
x2

t

〉 ≈

⎧⎪⎨
⎪⎩

t
3−4p̃

for p̃ < 3/4

t ln t for p̃ = 3/4
t4p̃−2

(4p̃−3)�(4p̃−2) for p̃ > 3/4.

(6)

This means the system shows normal diffusion for p̃ < 3/4
and superdiffusion for p̃ > 3/4. Therefore, the ERW is
interesting from a theoretician’s point of view as it is one
of the simplest models that show anomalous diffusion.

For p̃ > 1/2 the model can be reformulated as follows.
In each time step starting from the second, the elephant
remembers some point in the past. Then it needs to decide
whether to do the same as or the opposite it did in the past.

For that purpose we can chose a uniform random number
r between zero and one. If r � p̃ the elephant does the same
as it did in the past and if r > p̃ it does the opposite. We will
use the notion that the elephant flips a coin that shows heads
in the first case and tails in the second.

Now imagine we choose some parameter p such that 0 <

p < p̃ and we modify the coin such that it shows heads if
r � p and tails otherwise. If the coin shows heads it is clear
that r � p < p̃ and the elephant has to do the same as in the

past. If, on the other hand, the coin shows tails the elephant
does not know what to do since, although r > p, neither of the
possibilities r � p̃ or r > p̃ can be ruled out.

In that case the elephant needs a second coin. Assume that
if p < r � p̃ the second coin will show heads and if r > p̃

it will show tails. Hence the elephant will do the same as in
the past when the second coin shows heads and it will do
the opposite when the second coin shows tails. Then the total
probabilities of doing the same as or opposite to the past are
still the same:

Prob(σt = σt ′ )

= Prob(1st coin is heads)

+ Prob(1st coin is tails)Prob(2nd coin is heads)

= p + (1 − p)
p̃ − p

1 − p
= p̃, (7)

Prob(σt = −σt ′ )

= Prob(1st coin is tails)Prob(2nd coin is tails)

= (1 − p)
1 − p̃

1 − p
= 1 − p̃. (8)

We assumed p̃ > 1/2, therefore 2p̃ − 1 is between zero and
one. Hence we are free to choose

p = 2p̃ − 1. (9)

In this case the second coin shows heads and tails with equal
probability 1/2. Thus once the first coin shows tails, the
elephant will do the same as or the opposite it has done in
the past with equal probability. From this it follows that it will
go right or left with equal probability 1/2 no matter what it
has done in the past. Therefore, the elephant can just as well
decide to go to the right if the second coin shows heads and to
go to the left if the second coin shows tails.

This is exactly what was done in [17]. There the elephant
does the same as it did in the past with probability p and with
probability 1 − p it chooses at random (with equal probability)
to go right or left independent of the past. Naturally, the
moments obtained in [17] agree with the ones from the original
work [11] when the parameter identification (9) is taken into
account. (See [32] to see exactly how the processes can be
defined on the same probability space.) We will refer to this
formulation of the ERW as the ERW1. In Fig. 1 we illustrate
the connection between these two formulations.

If p̃ = 1/2 the ERW is just a simple random walk where
the elephant goes left or right in each time step with equal
probability 1/2 independent of the past. When p̃ < 1/2 we
can use a similar two-coin formulation as for the ERW1, but
with

p = 1 − 2p̃, (10)

with the only difference being that the elephant will do the
opposite to what it did in the past when the first coin shows
heads. That is, it will do the opposite to what it did in the past
with probability p and with probability 1 − p it will choose at
random whether to go right or left. We refer to this formulation
as the ERW2.
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p 1 − p

p̃ 1 − p̃
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+1 −1
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FIG. 1. Illustration of the connection between the formulations
ERW and ERW1. The upper bar represents the ERW1 and the lower
bar the ERW. There, with probability p̃ the elephant does the same
as in the past and with probability 1 − p̃ it does the opposite. The
event of doing the same is split into two parts, where the first part has
probability p and the second part has probability p̃ − p = 1 − p̃.
Going to the formulation ERW1, the first part is kept. The second
part and the event of doing the opposite have the same probability;
considering only these two events, the probability of going right or
left is 1/2 independent of the step that was done in the past. Hence
these two events are replaced by the events of going to the right
or going to the left in the ERW1, without changing any transition
probabilities.

III. MEMORY TREE OF THE ELEPHANT

Consider the formulation ERW1. We are going to draw the
memory tree of the elephant. For each time step we will add a
node that will be labeled by the number of the time step and
a spin. The spin of the node with number t will be σt . Hence
it is either +1 or −1 depending on the direction the elephant
moves at time t . For the spin we might for brevity write only
+ or − instead of σt = ±1 and we will justify calling them
spins in a moment.

We start by drawing a node for the first step. It will get label
1 and spin + if σ1 = +1 and spin − if σ1 = −1. We continue
to add the second node. As the elephant will remember what it
did in the first step, that is, t ′ = 1, we will connect the second
with the first node. However, we will delete this edge if the
first coin shows tails. In this case the elephant does not really
remember but it chooses at random what to do. The second
node gets the label 2 and spin + or − depending on the value
of σ2.

We continue to add nodes for each time step and connect
them to the node of the point t ′ in the past that the elephant
is remembering. When the first coin shows tails we delete this
edge.

When the elephant made N steps we end up with a graph
with N nodes. If we would not have deleted edges the graph
would be a tree. With some missing edges it is a forest. We call
them the memory tree and the memory forest of the elephant,
respectively. In Fig. 2 we show one realization of the ERW1
until time t = 15 together with the corresponding memory
forest.

There are some interesting observations apparent from the
graph. Following some path of the memory tree starting from
the root (the node with the label 1), labels are always increasing
along the path. That is because we attached nodes with higher
labels to previously existing ones with lower labels. The second
important observation is that all nodes from one connected
component of the memory forest, which we call a cluster,
carry the same spin. This has the simple reason that each time
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2+ 3+ 6−

5+ 4+ 8+ 9+

13+

7− 11−

12−10+

14+ 15+ (b)

FIG. 2. (a) Trajectory and (b) memory forest of the same
realization of the ERW1. Deleted edges are indicated by dashed lines.
Time steps, or nodes, that belong to one memory component, that is,
one cluster, are drawn with the same color. Here q = 1/2 and p = 0.7.

an edge was not removed, that is, the first coin showed heads,
the elephant did the same as in the past.

At this stage it is interesting to review how randomness
comes into the construction of the graph. It enters in three
stages. The first stage is the construction of the memory tree.
There it is chosen at random to which node the new one should
be attached, that is, which time point in the past the elephant
chooses to remember. The next stage is the deletion of edges,
that is, the tossing of the first coin. The third stage is the
flipping of the second coin.

In fact, these three random influences are independent of
each other. For instance, it will not affect the result of the first
coin flip which point in the past the elephant has chosen to
remember. In fact, there is no need to flip the second coin if
the first one shows heads. However, it can be flipped anyway
without influencing the resulting graph. By the choice of the
memory tree and the tossing of the first coin, a forest is
constructed and by the flipping of the second coin a spin
is assigned to each cluster. It is important to note that the
construction of the forest and the assignment of spins are
really independent.

We observe furthermore that the position of the elephant
after N steps is just the sum of the spins of all nodes. Hence
it corresponds to some kind of magnetization of the graph,
which is why we used the notion of spins in the first place.
Denoting this magnetization of the memory forest of size N
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by MN we have

xt=N = MN =
N∑

i=1

σi. (11)

IV. DELETING EDGES OF RANDOM RECURSIVE TREES

Recursive trees are nonplanar trees. That means the order
of the child nodes of one node does not matter. Furthermore,
a recursive tree of size N is labeled with numbers from one to
N , where the node labeled with 1 is called the root of the tree.
As already mentioned in the previous section, a recursive tree
is defined by the property that all paths starting from the root
follow nodes with increasing labels.

We can obtain a RRT of size N in two ways. The first
is to choose one of all different recursive trees of size N at
random with uniform probability. This is more a definition
than a practical way to obtain a random recursive tree. The
second procedure is constructive and recursive. In the first
step start with the root node. In the following N − 1 steps
attach the next node (with next highest label) to one of the
existing nodes chosen at random with uniform probability.

Random recursive trees have interesting fractal or self-
similar properties. If one edge of a RRT is deleted, two
independent RRTs emerge. More formally, if we choose a RRT
of size N and delete a randomly chosen edge, we obtain a tree
that contains the root and another tree. Conditioned on the size
of the root-containing tree to be k < N , the root-containing
tree is a RRT of size k and the other tree is an independent
RRT of size N − k [26] (see also [25]).

In percolation theory one investigates usually the clusters of
a random graph that is obtained from another graph by deleting
either randomly chosen edges (bond percolation) or vertices
(site percolation) [33]. Often the original graph is a lattice of
dimension d, e.g., Zd . Some authors investigated the deletion
of vertices [31] or edges [23–25,29,30] of RRTs. If each edge
is deleted independently with probability 1 − p or kept with
probability p ∈ [0,1], the process is called Bernoulli bond
percolation on RRTs. This is exactly what we did to obtain the
memory forest of the elephant. We can use the correspondence
between the ERW and percolation on RRTs to translate results
from one model to the other and vice versa.

We denote the clusters of the memory forest by ci , where
i = 1,2,3, . . . gives an order to the clusters. The ci are chosen
such that c1 denotes the root cluster and i < j if the first node
of ci was attached to the memory tree before the first node
of cj . For technical reasons we might set ci = ∅ for all i that
are larger than the number of clusters. We further denote the
spin that is carried by all nodes of cluster ci by mi , that is,
mi = ±1 or zero if ci = ∅. We denote the total magnetization,
the sum of all spins, of cluster ci by Mi . Since all spins of one
cluster are equal, we have Mi = mi |ci |, where |ci | denotes the
number of nodes that belong to cluster ci . For the expectation
value of the magnetization of the memory forest we find

〈xt=N 〉 = 〈MN 〉 =
∞∑
i=1

〈Mi〉 =
∞∑
i=1

〈|ci |〉〈mi〉

= (2q − 1)〈|c1|〉, (12)

where 〈·〉 denotes the expectation value over both the construc-
tion of the random forest and the assignment of spins. The only
contribution comes from the root cluster, since the expectation
value of the magnetization of all other clusters is zero, since
they carry the spin ±1 with equal probability 1/2. Hence we
connect the expectation value of the root cluster size with the
first moment of the ERW that is known [see Eq. (4)]. This
leads to an exact expression for the expectation value of the
root cluster size

〈|c1|〉 = �(N + p)

�(p + 1)�(N )
. (13)

We can squeeze out even a little more. We say a cluster is of
the kth generation if each path from the root to an arbitrary
node of this cluster is interrupted by exactly k deleted edges.
We are interested in the number of nodes in clusters of the
first generation. Therefore, we modify the coupling between
the ERW1 and the percolation on RRTs, that is, we modify the
construction of the memory tree. We replace the first coin by
a coin that can show heads, tails, or ε. We keep the probability
1 − p to show tails, the probability to show heads is changed to
p − ε for some small parameter ε > 0, and the first coin shows
ε with probability ε. The elephant is supposed to remember
what it did in the past, when the first coin shows either heads or
ε such that the movement of the elephant will not be affected
by these changes. However, we will change the construction
of the memory tree. We delete an edge if the result of the
corresponding first coin toss is either tails or ε. If the result is
heads the edge is kept. We change nothing in the assignment
of the spins, that is, the spin of node i will still be σi such that
the magnetization MN still corresponds to the position of the
elephant xt=N . All spins of nodes that belong to one cluster
are still equal, but the assignments of spins to the clusters is
not independent anymore. More precisely, the spin assigned
to a cluster of the first generation will be coupled to the spin
of the root cluster with probability ε/(1 − p + ε) and with
probability 1 − ε/(1 − p + ε) it will be chosen independently.
Hence the expectation value of the magnetization is

〈MN 〉 = (2q − 1)

⎡
⎣〈|c1|〉 + ε

1 − p + ε

∑
i,ci is 1st generation

〈|ci |〉

+
(

ε

1 − p + ε

)2 ∑
j,cj is 2nd generation

〈|cj |〉 + O(ε3)

⎤
⎦.

(14)

We have deleted each edge with probability 1 − p + ε and
according to Eq. (13) we have

〈|c1|〉 = �(N + p − ε)

�(p − ε + 1)�(N )
. (15)

Inserting Eqs. (4) and (15) into Eq. (14) and considering the
first order in ε, that is, subtracting the left-hand side, dividing
by ε, and taking the limit ε → 0, we obtain∑

i,ci is 1st generation

〈|ci |〉

= 1 − p

p

�(N + p)

�(p)�(N )
[�0(N + p) − �0(p + 1)], (16)
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where �0 denotes the digamma function. Evaluating the terms
of order ε2 in Eq. (14), we can easily obtain an expression
for the expectation value of the number of nodes in the
second generation child clusters. Analogously, one obtains the
expectation value of the number of nodes in the kth generation
child clusters for arbitrary k � 1.

So far we have used the first moment of the ERW to infer
properties of clusters of percolation processes on RRTs. In
addition, we can use the second moment of the ERW to observe
further properties. The second moment corresponds to the
expectation value of the square of the magnetization of the
memory forest〈
x2

t=N

〉 = 〈M2
N 〉 =

〈 ∞∑
i=1

M2
i

〉
+ 2

∑
j<k

〈MjMk〉

=
∞∑
i=1

〈
m2

i |ci |2
〉 + 2

∑
j<k

〈mjmk〉〈|cj ||ck|〉

=
∞∑
i=1

〈|ci |2〉 = N

2p − 1

(
�(N + 2p)

�(N + 1)�(2p)
− 1

)
, (17)

where we used that the spin assignment to the clusters is
independent of the cluster structure and of other spins, hence
〈mi〉 = 0 for all i > 1. Therefore, all mixed terms 〈MjMj 〉
cancel. Furthermore, m2

i = 1 when mi = ±1. In the last line
of Eq. (17) we inserted the result for the second moment from
Eq. (5) with α = p [cf. Eqs. (3) and (9)]. Thus we found the
expectation value of the sum of the cluster sizes squared.

We successfully used the ERW1 to study percolation on
RRTs. We can also use the ERW2. The construction of the
memory tree and forest remains almost the same apart from
differences in the spin assignments. Spins of one cluster are
not identical, but spins of neighboring nodes have opposite
spins. This is because the elephant always does the opposite
when it decides to remember what it did in the past. The spin of
the root of each cluster is determined by the toss of the second
coin. All other spins of the same cluster follow from the tree
structure. In Fig. 3 we show one realization of the ERW2 until
time t = 15 and the corresponding memory forest.

Given that the root of a cluster ci has spin +1 and the size
of the cluster is at least 2, we have 〈Mi = 0〉, which we prove
in Appendix A. The same result holds when the root of the
cluster has spin −1. For all clusters except the root cluster,
〈Mi = 0〉 remains true also if the cluster has size 1, since then
it carries spin ±1 with equal probability 1/2. Hence

〈xt=N 〉 = 〈MN 〉 =
∞∑
i=1

〈Mi〉 = 〈M1〉

= Prob(|c1| = 1)〈m1〉 = Prob(|c1| = 1)(2q − 1).

(18)

Thus we obtain with Eq. (4) the probability that the root is
isolated

Prob(|c1| = 1) = �(N − p)

�(N )�(1 − p)
. (19)

To infer information on the percolation process on RRTs
we can consider a modified version of the ERW. As in the
ERW, the elephant starts at x0 = 0 and goes right in the first
step with probability q and left with probability 1 − q. In each

0 2 4 6 8 10 12 14
t

0

1

2

3

x
(t

)

(a)

1+

2− 4−

3+ 5+ 6+

8−
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11− 12+ 7+

10−13+

14− 15−

(b)

FIG. 3. (a) Trajectory and (b) memory forest of the same
realization of the ERW2. Deleted edges are indicated by dashed lines.
Time steps, or nodes, that belong to one memory component, that is,
one cluster, are drawn with the same color. Here q = 1/2 and p = 0.7.

following step it chooses a time t ′ from the past with uniform
probability. Then

σt+1 =
⎧⎨
⎩

σt ′ with probability p̃

−σt ′ with probability 1 − p̃ − r

+1 with probability r.

(20)

That means it either does the same as it did in the past or the
opposite, or it goes right, independent on the past. Clearly p̃,
1 − p̃ − r , and r must all be probabilities, hence 0 � r + p̃ �
1 must be satisfied. This model is only a slight modification
of the original ERW that is recovered for r = 0. We will refer
to this process as the skew elephant random walk (SERW).
We can apply the same method as in [11] to calculate the first
moment. The probability to go right in step t + 1, given the
past, is

Prob(σt+1 = +1|σ1, . . . ,σt ) = r + p̃ Prob(σt ′ = 1|σ1, . . . ,σt )

+ (1 − p̃ − r)Prob(σt ′ = −1|σ1, . . . ,σt ). (21)

Suppose the elephant moves k times to the right and t − k times
to the left until time t . Then clearly xt = k − (t − k) = 2k − t

and consequently k = (xt + t)/2. Hence

Prob(σt ′ = +1|σ1, . . . ,σt ) = k

t
= t + xt

2t
,

Prob(σt ′ = −1|σ1, . . . ,σt ) = t − k

t
= t − xt

2t
. (22)
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RÜDIGER KÜRSTEN PHYSICAL REVIEW E 93, 032111 (2016)

Inserting this expression into Eq. (21), we find

Prob(σt+1 = +1|σ1, . . . ,σt ) = r + 1

2
+ 2p̃ + r − 1

2

xt

t
.

(23)

From this expression we can calculate the expectation value
of the increment as

〈σt+1|σ1, . . . ,σt 〉 = +1 Prob(σt+1 = +1|σ1, . . . ,σt )

− 1[1 − Prob(σt+1 = +1|σ1, . . . ,σt )]

= r + (2p̃ + r − 1)
xt

t
. (24)

Averaging over all realizations until time t , we find

〈σt+1〉 = r + (2p̃ + r − 1)
〈xt 〉
t

. (25)

Taking the expectation value of Eq. (1), we find from this
expression

〈xt+1〉 = r +
(

1 + γ

t

)
〈xt 〉, (26)

with

γ = 2p̃ + r − 1. (27)

With the initial value 〈x1〉 = 2q − 1 the explicit expression for
〈xt 〉 follows

〈xt 〉 =
(

2q − 1 − r

1 − γ

)
�(t + γ )

�(t)�(γ + 1)
+ rt

1 − γ
. (28)

For completeness we will also calculate the second moment.
From Eq. (1) we find

x2
t+1 = x2

t + 2σt+1xt + σ 2
t+1. (29)

Taking into account that σ 2
t+1 = 1 and using Eq. (24), we find

for the second moment

〈x2
t+1〉 = 1 + 2r〈xt 〉 +

(
1 + 2γ

t

)〈
x2

t

〉

= 1 + 2r

(
2q − 1 − r

1 − γ

)
�(t + γ )

�(t)�(γ + 1)

+ 2r2t

1 − γ
+

(
1 + 2γ

t

)〈
x2

t

〉
, (30)

where we inserted Eq. (28). With the initial condition x2
1 = 1

we find the explicit formula

〈x2
t 〉 = �(γ + t)

�(γ + 1)�(t)
[−2r(t + 1)]

(
2q − 1

γ − 1
+ r

(γ − 1)2

)

+ 2�(2γ + t)

�(2γ + 1)�(t)

(
2r(2q − 1)

γ − 1
+ r2(3γ − 2)

(γ − 1)2(2γ − 1)

+ γ

2γ − 1

)
+ r2t2

(γ − 1)2
− t

2γ − 1

+ r2t

(γ − 1)2(2γ − 1)
. (31)

Similar to the ERW, we can reformulate also the SERW.
For p̃ = 1 − p̃ − r the SERW is just an ordinary random walk
where the elephant goes right with probability p̃ + r and left

with probability 1 − p̃ − r in all time steps starting from t = 1
and independent of the past. For completeness we will also give
the SERW1, although we will not use it further. This is the case
when p̃ > 1 − p̃ − r . In the SERW1 the first step is the same
as before and for any later time

σt+1 =

⎧⎪⎨
⎪⎩

σt ′ with probability p

+1 with probability 1 − p̃

−1 with probability 1 − p̃ − r.

(32)

This formulation is equivalent to the SERW when

p = 2p̃ + r − 1 = γ. (33)

The last case, which we call the SERW2, appears for p̃ < 1 −
p̃ − r and differs from the previous ones only in the increment,
which now reads

σt+1 =

⎧⎪⎨
⎪⎩

−σt ′ with probability p

+1 with probability p̃ + r

−1 with probability p̃.

(34)

This formulation is equivalent to the SERW when

p = −2p̃ − r + 1 = −γ. (35)

Considering the SERW2, we can infer information on the
number of clusters of size 1 from its respective memory tree.
For each time step in which the elephant is remembering
and doing the opposite of the past, the corresponding edge
is kept and in the case in which the elephant goes right or
left, the corresponding edge is removed. Hence vertices that
are connected by an edge carry opposite spin and the spins of
vertices that do not belong to the same cluster are independent
of each other. As we have argued before, all clusters are random
recursive trees themselves and if their size is larger than 1, the
expected magnetization is zero independent on the spin of the
root (see Appendix A). The expectation value of the spin of the
root of each child cluster is r/(2p̃ + r) = r/(1 − p). Hence we
find the expectation of the magnetization

〈xt=N 〉 = 〈MN 〉 =
∞∑
i=1

〈Mi〉 = (2q − 1)Prob(|c1| = 1)

+
∞∑
i=2

r

1 − p
Prob(|ci | = 1)

= (2q − 1)
�(N − p)

�(N )�(1 − p)

+ r

1 − p
〈No. of i > 1 : |ci | = 1〉

=
(

2q − 1 − r

p + 1

)
�(N − p)

�(N )�(1 − p)
+ rN

1 + p
, (36)

where we have plugged Eq. (19) into the first line and the last
line comes from Eq. (28) with γ = −p [cf. Eq. (35)]. From
this expression we obtain the expectation value of the number
of clusters different from the root cluster of size 1,

〈No. of i > 1 : |ci | = 1〉 = 1 − p

1 + p

[ −�(N − p)

�(N )�(1 − p)
+ N

]
.

(37)
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Adding the probability that the root cluster is of size 1 [see
Eq. (19)], we find the expectation value of the number of
clusters that are of size 1,

〈No. of i � 1 : |ci | = 1〉
= 2p

1 + p

�(N − p)

�(N )�(1 − p)
+ N

1 − p

1 + p
. (38)

In the following we use a process introduced in [13] that
we call the lazy elephant random walk (LERW) due to the
fact that in this model the elephant is allowed to sleep, which
means that it is allowed to stay at the same position for one
time step. In the first step the elephant still moves right with
probability q and left with probability 1 − q. The position after
all proceeding steps is determined by Eq. (1) with

σt+1 =

⎧⎪⎨
⎪⎩

σt ′ with probability p

−σt ′ with probability 1 − p − s

0 with probability s,

(39)

where t ′ is randomly chosen from {1, . . . ,t} and the system
parameters s,p must be chosen in such a way that all appearing
probabilities are between zero and one.

The first and second moments that have been calculated
in [13] are

〈xt 〉 = (2q − 1)
�(t + 2p + s − 1)

�(t)�(2p + s)
, (40)

〈
x2

t

〉 = 1

4p + 3s − 3

(
�(4p + 2s + t − 2)

�(4p + 2s − 2)�(t)
− �(1 − s + t)

�(1 − s)�(t)

)
.

(41)

For large t the leading behavior is

〈x2
t 〉 ≈

⎧⎪⎨
⎪⎩

t1−s

(3−4p−3s)�(1−s) for 4p + 3s − 3 < 0
1

�(1−s) t
t−s ln(t) for 4p + 3s − 3 = 0
t4p+2s−2

(4p+3s−3)�(4p+2s−2) for 4p + 3s − 3 > 0.

(42)

Depending on the choice of parameters, we can obtain all
exponents between 0 and 2. Thus the model can show
subdiffusion as well as superdiffusion. Note that Eq. (6) is
recovered for s = 0.

To obtain the second moment of the root cluster size we
set the parameter s = 1 − p. That means the elephant either
repeats what it did in the past or sleeps. We can construct
again the memory forest of the elephant by keeping the edges
whenever the elephant decides to do the same as in the past
and by deleting the corresponding edge whenever the elephant
decides to sleep. By this construction the spins of the root
cluster are all either +1 or −1 and the spins of all other clusters
are zero. Hence we find for the square of the magnetization〈

x2
t=N

〉 = 〈
M2

N

〉 = 〈|c1|2〉, (43)

and with Eq. (41) we find an exact expression for the second
moment of the root cluster size

〈|c1|2〉 = 1

p

(
�(2p + N )

�(2p)�(N )
− �(p + N )

�(p)�(N )

)
. (44)

Using certain ε modifications of the coupling between the
LERW and percolation on RRTs similar to the one used before,

one can obtain correlations of the root cluster size with the
number of nodes in first generation child clusters

〈|c1|(No. of nodes in 1st generation child clusters)〉

= 1 − p

p

[
�(2p + N )

�(2p)�(N )

(
− 1

p
− �0(2p) + �0(2p + N )

)

+ 1

p

�(p + N )

�(p)�(N )

]
, (45)

as well as the expectation value of the number of nodes in first
generation child clusters squared

〈(No. of nodes in 1st generation child clusters)2〉

= (1 − p)2

p2

[
�(2p + N )

�(2p)�(N )

(
8

p
+ 1

1 − p
+ 6�0(2p)

− 6�0(2p + N ) + 2p[�2
0 (2p) + �2

0 (2p + N )

− 2�0(2p)�0(2p + N ) − �1(2p) + �1(2p + N )]

)

+ �(p + N )

�(p)�(N )

(
− 8

p
− 1

1 − p
+ p

1 − p
[�0(p)

−�0(p + N )] + 2�0(p) − 2�0(p + N )

− 2p�0(p)�0(p + N )

)]
, (46)

where �k denotes the polygamma function. Details of the
calculation are given in Appendix B.

V. COMPARISON WITH PREVIOUS RESULTS

The main quantity that was discussed in [23–25] is the size
of the root cluster in certain limits, where N → ∞ and p → 1.
In this regime the root cluster is the largest cluster with high
probability. Also the sizes of the next largest clusters were
investigated in these works. The result may depend on the
precise way the aforementioned limits are assumed. Therefore,
we need to state the limit more precisely and there are several
ways to do it. One limit that was considered in [23] is

N → ∞, p(N ) = 1 − λ/ ln(N ). (47)

This limit is called supercritical in the literature. The first part
of the main result of [23] is that in this limit

1

N
|c1| → exp(−λ), (48)

where the convergence is in probability. We obtained an exact
expression for the expectation value of the root cluster size for
finite N [see Eq. (13)]. Evaluating the root cluster size divided
by N in the limit (47), we find

1

N
〈|c1|〉 → exp(−λ). (49)

We can also calculate the variance

lim
N→∞

〈(
1

N
|c1| − exp(−λ)

)2〉

= lim
N→∞

1

N2
〈|c1|2〉 − exp(−2λ). (50)
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As we have also the exact expression of the second moment of
the root cluster size [see Eq. (44)] we can calculate the limit

lim
N→∞

1

N2
〈|c1|2〉 = exp(−2λ). (51)

Hence the limit (48) is also achieved in mean square conver-
gence, which implies convergence in probability.

The second part of the main result of [23] deals with the
sizes of the next largest clusters after the root cluster. It is
stated that if C1, . . . ,Cl denote the l next largest clusters, then(

ln N

N
C1, . . . ,

ln N

N
Cl

)
→ (x1, . . . ,xl), (52)

where the convergence is in distribution in the limit (47) and
x1 > x2 > · · · denotes the sequence of atoms of a Poisson
random measure on (0,∞) with intensity λ exp(−λ)x−2dx.
This result clearly outruns our results as it gives detailed
information over the next largest clusters. However, as it was
argued in [24], the next largest clusters are of first generation
with high probability. Hence our result (16) on the number
of nodes in first generation child clusters is related to it.
Considering the limit (47), we find

ln N

N
〈No. of nodes in 1st generation child clusters〉

→ λ exp(−λ). (53)

Furthermore, we find from Eq. (46) in the limit (47),(
ln N

N

)2

〈(No. of nodes in 1st generation child clusters)2〉

→ 2λ2 exp(−2λ), (54)

such that the variance of the scaled quantity
ln N
N

(No. of nodes in 1st generation child clusters) converges
to λ2 exp(−2λ). That means the scaled number of nodes
in first generation child clusters is still fluctuating in the
limit (47), which is in accord with [23].

The main results of [24] generalize the findings of [23]
as [24] deals with more general limits of the form

N → ∞, p(N ) → 1, (55)

where (47) is called supercritical, the case 1/ ln N 
 1 −
p(N ) 
 1 is called weakly supercritical, and the case 0 < 1 −
p(N ) 
 1/ ln N is called strongly supercritical. The results
of [24] deal with the size of clusters of all generations. For the
root cluster size the result is

1

Np(N)
|c1| → 1, (56)

where the limit is in distribution. Also in these limits our
results (13) and (44) lead to the limit (56) in mean square
convergence.

Some authors investigated the cutting of random recursive
trees until the root is isolated [26–28]. In this process a
randomly chosen edge is removed and afterward only the
connected component that contains the root is considered. The
removal of edges is repeated until the root is isolated. Our
results are not so much connected to this process, however we
give the probability that the root is isolated in percolation on

RRTs [see Eq. (19)], which is in some sense a complementary
consideration.

VI. PERCOLATION VIEW ON ANOMALOUS DIFFUSION

We are using the analogy between the ERW and percolation
on RRTs to attain a deeper understanding of superdiffusion in
ERWs. For this purpose the study of the root cluster size is
essential. According to Eq. (13), the expectation value of the
root cluster size behaves for fixed p and large N as

〈|c1|〉 ≈ 1

�(p + 1)
Np. (57)

Considering also the second moment (44), one easily checks
that

|c1|
Np

→ 1

�(p + 1)
(58)

in mean square convergence. Hence, for large N , the leading
behavior of the root cluster size is

|c1| ≈ 1

�(p + 1)
Np. (59)

From Eq. (44) we find also the leading behavior of the second
moment of the root cluster size for large N ,

〈|c1|2〉 ≈ 1

p�(2p)
N2p. (60)

We are considering now the ERW in its formulations ERW1
and ERW2. In the ERW2 there is no anomalous diffusion.

In the memory forest of the ERW1 the spins of all nodes
belonging to one cluster are equal. According to Eq. (17) we
have 〈

x2
t

〉 = 〈|c1|2〉 + R, (61)

where the remainder is

R =
∞∑
i=2

〈|ci |2〉. (62)

Taking into account the asymptotic second moment of the root
cluster size (60) with t = N we find

〈
x2

t

〉 ≈ 1

p�(2p)
t2p + R. (63)

Hence, for p > 1/2 the superdiffusive behavior of the
ERW1 can be explained solely by the root cluster size
of the memory forest of the ERW1. That means the
leading contribution to the second moment comes exclu-
sively from the memory component that contains the first
step.

For p < 1/2 also the other cluster sizes are important. The
root cluster size squared grows sublinearly with the system
size with large probability [see Eq. (59)]. Each of the other
clusters is likely to be smaller than the root cluster. Thus
the leading contribution in (17) does not come from a single
cluster, but from all clusters. Since the number of clusters is
growing linearly in t with high probability, the second moment
also grows linearly in time and hence normal diffusion is
observed.
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We also want to attain a deeper understanding of subd-
iffusion in the LERW model [13]. Therefore, we are going
to modify the construction of the memory forest once
more. Each time the elephant is remembering a time in
the past it was not sleeping and it decides to sleep in
this step, the corresponding edge is deleted. That means
these edges are deleted with probability s. If the elephant
is remembering a step in the past when it was sleeping, it
will sleep with probability one. However, we will delete the
corresponding edge also in this case with probability s. Thus
each edge is kept with probability 1 − s and deleted with
probability s.

We observe that the spins of all nodes that do not belong to
the root cluster are zero. These nodes correspond to the steps
the elephant is sleeping. On the other hand, the spins of all
nodes of the root cluster are nonzero and they are distributed
as the steps of ERW with the parameter

p̃ = p

1 − s
. (64)

Since the root cluster is an RRT of random size itself we
can construct a realization of the LERW at time t as follows.
Choose a random time T , which we call the effective time,
from a distribution equal to the distribution of the root clusters
size for percolation on a RRT of size t and with percolation
parameter 1 − s. Then perform an ERW with the parameter
p̃ = p/(1 − s) until time T . This means that the LERW can be
seen as an ERW with an effective time T , which is a random
variable. For t → ∞ the leading behavior of T is deterministic,
according to Eq. (59),

T ≈ 1

�(2 − s)
t1−s . (65)

Replacing the time in Eq. (6) by the effective time (65) and
taking Eq. (64) into account, we find the leading behavior of
the LERW (42).

One can imagine to choose the root cluster not according
to the ERW but following some other process. If we choose a
ballistic motion, that means all spins of the root cluster are +1,
with the effective time as the root cluster size, we arrive at the
process investigated in [16]. A generalization of the LERW
is obtained when the root cluster is chosen according to the
SERW.

VII. CONCLUSION

In this paper we revealed a surprising connection between
percolation on random recursive trees and the elephant random
walk or similar models. We used a stochastic coupling between
these models to obtain exact results for the expectation values
of certain properties of the percolation process on RRTs.
These results allowed us to reobtain certain limiting results
on the root cluster size for percolation on RRTs known in
the literature. The results of this paper have proved mean
square convergence, which implies the previously proved
convergence in probability.

All results on percolation on RRTs in this paper rely in
principle on recursion relations of expectation values of certain
quantities. We want to remark that in principle we do not
need to define any random walk to obtain these results. Not

even the assignment of a spin to each node is necessary.
However, the calculations become much more intuitive using
this formulation and it directly gives an idea how certain
quantities can be calculated. Furthermore, it is interesting on
its own that percolation on RRTs is related to random walks
that show anomalous diffusion.

Reformulations of the ERW model introduced in this
paper, as well as the correspondence with RRTs, lead to a
deeper understanding of ERW-like models. In particular we
gave an demonstrative explanation of subdiffusion present in
the LERW by introducing an effective time. We also found
that superdiffusion in the ERW is due to one giant memory
component only. We further introduced a generalization of the
ERW, the skew elephant random walk, for which we calculated
the first and the second moment.

The correspondence between ERW-like models and per-
colation on RRTs gives a powerful tool to solve even more
problems that might appear in the study of percolation
on RRTs. Furthermore, future work might profit from the
equivalence of these models also in the other direction, where
one might infer information on ERW-like models from what
is known or might be found in the future about percolation on
RRTs.
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APPENDIX A: MAGNETIZATION OF RANDOM
RECURSIVE TREES WITH ANTIALIGNED SPINS

We consider RRTs of size N where the root node has spin
σ1 = +1 and for neighboring nodes i,j the spins have opposite
signs σi = −σj . We prove that the expectation value of the
magnetization of the RRT is one for N = 1 and zero for N � 2.
The case N = 1 is trivial. The case N = 2 is also clear since
there is only one possible RRT of size 2, for which we have
σ1 = +1 and σ2 = −1. Let us denote the set of all possible
RRTs of size N by TN . Once we have chosen a realization
τ ∈ TN , then the magnetization MN (τ ) is already determined.
For N > 2 we will define a bijective map f : TN → TN that
satisfies

MN (τ ) = −MN (f (τ )). (A1)

The map f interchanges the child nodes of the first two nodes.
That means if in the RRT τ any node k > 2 is a child of the root
node, it will be a child of the second node in f (τ ) and if any
node k > 2 is a child of the second node in τ , it will be a child of
the root node in f (τ ). All other connections remain unaffected
by f . One easily checks that f (τ ) ∈ TN and f (f (τ )) = τ ,
hence the map is bijective. Since the root node has spin σ1 =
+1 and the second node has the opposite spin σ2 = −1, the
property (A1) follows. Let us denote all realizations that lead to
a positive, negative, or zero magnetization by TN,+, TN,−, and
TN,0, respectively. Then the sets TN,+,TN,−,TN,0 are pairwise
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disjoint and their union is

TN = TN,+ ∪ TN,− ∪ TN,0. (A2)

The expectation value of the magnetization of the RRT is

〈MN 〉 = 1

|TN |
∑
τ∈TN

MN (τ )

= 1

|TN |

⎛
⎝ ∑

τ∈TN,+

MN (τ ) +
∑

τ∈TN,−

MN (τ ) +
∑

τ∈TN,0

MN (τ )

⎞
⎠

= 1

|TN |

⎛
⎝ ∑

τ∈TN,+

MN (τ ) +
∑

τ∈TN,−

MN (τ )

⎞
⎠

= 1

|TN |

⎛
⎝ ∑

τ∈TN,+

MN (τ ) +
∑

τ∈TN,+

MN (f (τ ))

⎞
⎠

= 1

|TN |
∑

τ∈TN,+

[MN (τ ) + MN (f (τ ))] = 0, (A3)

where we used that for all τ ∈ TN,0, MN (τ ) = 0 and that due
to the bijectivity of f and the reflection property (A1) we have
TN,− = f (TN,+). The considerations are of course equivalent
if the root has spin σ1 = −1. Hence, in this case the expectation
value of the magnetization is −1 for N = 1 and 0 for N � 2.

APPENDIX B: SECOND MOMENT OF NUMBER OF
NODES IN FIRST GENERATION CHILD CLUSTERS

We are calculating the expectation value of the number
of nodes that are in child clusters of the first generation
squared. Therefore, we consider the LERW with the parameter
s = 1 − p − ε. We further modify the construction of the
memory forest a little. Each time the elephant decides to go
to sleep or to do the opposite of what it has done in the past
the corresponding edge will be deleted. In addition, given that
the elephant decides to do the same as it did in the past, the
corresponding edge will be deleted as well with probability
ε/p. Thus each edge will be deleted with probability 1 − p + ε

and it will be kept with probability p − ε. With this setup we
find for the magnetization squared〈

x2
t=N

〉 = 〈
M2

N

〉
= 〈|c1|2p−ε

〉 + 2ε

1 − p + ε

∑
i,ciof 1st generation

〈|ci |2p−ε

〉

+ 4ε2

(1 − p + ε)2

∑
i,ciof 2nd generation

〈|ci |2p−ε

〉 + O(ε3)

= 1

p − 3ε

(
�(2p − 2ε + N )

�(2p − 2ε)�(N )
− �(p + ε + N )

�(p + ε)�(N )

)
,

(B1)

where the lower index p − ε indicates that each edge was kept
with probability p − ε. We used Eq. (41) in the last line. When
plugging Eq. (44) in with the parameter p − ε, we can compare
coefficients in different powers of ε. The terms of zeroth order
in ε just reproduce (44) for ε → 0. Comparing terms linear in

ε we find∑
i,ciof 1st generatioin

〈|ci |2p
〉 = 1 − p

p

[
1

p

�(2p + N )

�(2p)�(N )
+ �(p + N )

�(p)�(N )

×
(

�0(p) − �0(p + N ) − 1

p

)]
,

(B2)

where �k denotes the polygamma function.
Replacing p with p − ε in Eq. (B2) and plugging it in

Eq. (B1), we can compare coefficients of ε2 in Eq. (B1) to find∑
i,ciof 2nd generation

〈|ci |2p
〉

= (1 − p)2

p2

[
1

p

�(2p + N )

�(2p)�(N )
+ �(p + N )

�(p)�(N )

×
(

− 1

p
+ �0(p) − �0(p + N ) − p

2

[
�2

0 (p)

+�2
0 (p + N ) − 2�0(p)�0(p + N ) − �1(p)

+�1(p + N )
])]

. (B3)

Now we consider the original memory forest of the LERW.
That means each time the elephant is doing the same as it
did in the past, the corresponding edge is kept and otherwise
it is deleted. That means it is kept with probability p and
deleted with probability 1 − p. We still consider the sleeping
probability s = 1 − p − ε. Then we find for the magnetization
squared〈
x2

t

〉 = 〈
M2

N

〉
= 〈|c1|2〉 + ε

1 − p

∑
i,ciof 1st generation

(〈|ci |2〉 − 2〈|c1||ci |〉)

+ ε2

(1 − p)2

⎛
⎝ ∑

i<j,ci/j of 1st generation

2〈|ci ||cj |〉

+
∑

i,ciof 2nd generation

〈|ci |2〉
⎞
⎠

= 1

p − 3ε

(
�(2p − 2ε + N )

�(2p − 2ε)�(N )
− �(p + ε + N )

�(p + ε)�(N )

)
. (B4)

Comparing terms of Eq. (B4) that are linear in ε, we find∑
i,ciof 1st generation

(〈|ci |2〉 − 2〈|c1||ci |〉)

= 1 − p

p

[
�(2p + N )

�(2p)�(N )

(
3

p
+ 2�0(2p) − 2�0(2p + N )

)

+ �(p + N )

�(p)�(N )

(
− 3

p
+ �0(p) − �0(p + N )

)]
. (B5)

From Eqs. (B2) and (B5) we obtain the correlations between
the root cluster size and the number of nodes in first generation
child clusters (45).
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Comparing terms of Eq. (B4) that are quadratic in ε, we find∑
i<j,ci/j of 1st generation

2〈|ci ||cj |〉 +
∑

i,ciof 2nd generation

〈|ci |2〉

= (1 − p)2

p2

[
�(2p + N )

�(2p)�(N )

(
9

p
+ 6�0(2p) − 6�0(2p + N )

+ 2p
[
�2

0 (2p) + �2
0 (2p + N ) − 2�0(2p)�0(2p + N ) − �1(2p) + �1(2p + N )

]) + �(p + N )

�(p)�(N )

×
(

− 9

p
+ 3�0(p) − 3�0(p + N ) − p

2

[
�2

0 (p) + �2
0 (p + N ) + 2�0(p)�0(p + N ) − �1(p) + �1(p + N )

])]
. (B6)

Subtracting Eq. (B3) from and adding Eq. (B2) to Eq. (B6), we obtain the expectation value of the number of nodes in first
generation child clusters squared. The result is given in Eq. (46). One can continue to calculate correlations and the second
moment of the number of nodes in kth generation child clusters, evaluating terms of higher order in ε.
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[27] A. Iksanov and M. Möhle, Electron. Commun. Prob. 12, 28

(2007).
[28] M. Kuba and A. Panholzer, Online J. Anal. Comb. 9, 1 (2014).
[29] C. Marzouk, Stoch. Proc. Appl. 126, 265 (2016).
[30] E. Baur and J. Bertoin, Electron. J. Probab. 20, 1 (2015).
[31] Z. Kalay and E. Ben-Naim, J. Phys. A: Math. Theor. 48, 045001

(2015).
[32] R. Kürsten, arXiv:1503.03302.
[33] G. R. Grimmett, Percolation, 2nd ed. (Springer, Berlin, 1999).

032111-11

http://dx.doi.org/10.1038/nature04292
http://dx.doi.org/10.1038/nature04292
http://dx.doi.org/10.1038/nature04292
http://dx.doi.org/10.1038/nature04292
http://dx.doi.org/10.1529/biophysj.104.044263
http://dx.doi.org/10.1529/biophysj.104.044263
http://dx.doi.org/10.1529/biophysj.104.044263
http://dx.doi.org/10.1529/biophysj.104.044263
http://dx.doi.org/10.1016/S0006-3495(97)78139-6
http://dx.doi.org/10.1016/S0006-3495(97)78139-6
http://dx.doi.org/10.1016/S0006-3495(97)78139-6
http://dx.doi.org/10.1016/S0006-3495(97)78139-6
http://dx.doi.org/10.1063/1.866716
http://dx.doi.org/10.1063/1.866716
http://dx.doi.org/10.1063/1.866716
http://dx.doi.org/10.1063/1.866716
http://dx.doi.org/10.1103/PhysRevLett.92.178101
http://dx.doi.org/10.1103/PhysRevLett.92.178101
http://dx.doi.org/10.1103/PhysRevLett.92.178101
http://dx.doi.org/10.1103/PhysRevLett.92.178101
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1103/PhysRevLett.50.77
http://dx.doi.org/10.1103/PhysRevLett.50.77
http://dx.doi.org/10.1103/PhysRevLett.50.77
http://dx.doi.org/10.1103/PhysRevLett.50.77
http://dx.doi.org/10.1103/PhysRevB.12.2455
http://dx.doi.org/10.1103/PhysRevB.12.2455
http://dx.doi.org/10.1103/PhysRevB.12.2455
http://dx.doi.org/10.1103/PhysRevB.12.2455
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1103/PhysRevE.70.045101
http://dx.doi.org/10.1103/PhysRevE.70.045101
http://dx.doi.org/10.1103/PhysRevE.70.045101
http://dx.doi.org/10.1103/PhysRevE.70.045101
http://dx.doi.org/10.1103/PhysRevLett.98.070603
http://dx.doi.org/10.1103/PhysRevLett.98.070603
http://dx.doi.org/10.1103/PhysRevLett.98.070603
http://dx.doi.org/10.1103/PhysRevLett.98.070603
http://dx.doi.org/10.1103/PhysRevE.82.021101
http://dx.doi.org/10.1103/PhysRevE.82.021101
http://dx.doi.org/10.1103/PhysRevE.82.021101
http://dx.doi.org/10.1103/PhysRevE.82.021101
http://dx.doi.org/10.1103/PhysRevE.86.022103
http://dx.doi.org/10.1103/PhysRevE.86.022103
http://dx.doi.org/10.1103/PhysRevE.86.022103
http://dx.doi.org/10.1103/PhysRevE.86.022103
http://dx.doi.org/10.1088/1751-8113/46/50/505002
http://dx.doi.org/10.1088/1751-8113/46/50/505002
http://dx.doi.org/10.1088/1751-8113/46/50/505002
http://dx.doi.org/10.1088/1751-8113/46/50/505002
http://dx.doi.org/10.1103/PhysRevE.90.022136
http://dx.doi.org/10.1103/PhysRevE.90.022136
http://dx.doi.org/10.1103/PhysRevE.90.022136
http://dx.doi.org/10.1103/PhysRevE.90.022136
http://dx.doi.org/10.1103/PhysRevE.90.012103
http://dx.doi.org/10.1103/PhysRevE.90.012103
http://dx.doi.org/10.1103/PhysRevE.90.012103
http://dx.doi.org/10.1103/PhysRevE.90.012103
http://dx.doi.org/10.1016/j.physa.2014.11.047
http://dx.doi.org/10.1016/j.physa.2014.11.047
http://dx.doi.org/10.1016/j.physa.2014.11.047
http://dx.doi.org/10.1016/j.physa.2014.11.047
http://dx.doi.org/10.1098/rstb.1925.0002
http://dx.doi.org/10.1098/rstb.1925.0002
http://dx.doi.org/10.1098/rstb.1925.0002
http://dx.doi.org/10.1098/rstb.1925.0002
http://dx.doi.org/10.1093/biomet/42.3-4.425
http://dx.doi.org/10.1093/biomet/42.3-4.425
http://dx.doi.org/10.1093/biomet/42.3-4.425
http://dx.doi.org/10.1093/biomet/42.3-4.425
http://dx.doi.org/10.1126/science.149.3683.510
http://dx.doi.org/10.1126/science.149.3683.510
http://dx.doi.org/10.1126/science.149.3683.510
http://dx.doi.org/10.1126/science.149.3683.510
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1002/rsa.20448
http://dx.doi.org/10.1002/rsa.20448
http://dx.doi.org/10.1002/rsa.20448
http://dx.doi.org/10.1002/rsa.20448
http://dx.doi.org/10.1002/rsa.20603
http://dx.doi.org/10.1002/rsa.20603
http://dx.doi.org/10.1002/rsa.20603
http://dx.doi.org/10.1016/0025-5564(74)90013-3
http://dx.doi.org/10.1016/0025-5564(74)90013-3
http://dx.doi.org/10.1016/0025-5564(74)90013-3
http://dx.doi.org/10.1016/0025-5564(74)90013-3
http://dx.doi.org/10.1214/ECP.v12-1253
http://dx.doi.org/10.1214/ECP.v12-1253
http://dx.doi.org/10.1214/ECP.v12-1253
http://dx.doi.org/10.1214/ECP.v12-1253
http://www.math.rochester.edu/ojac/vol9/98.pdf
http://dx.doi.org/10.1016/j.spa.2015.08.006
http://dx.doi.org/10.1016/j.spa.2015.08.006
http://dx.doi.org/10.1016/j.spa.2015.08.006
http://dx.doi.org/10.1016/j.spa.2015.08.006
http://dx.doi.org/10.1214/EJP.v20-3866
http://dx.doi.org/10.1214/EJP.v20-3866
http://dx.doi.org/10.1214/EJP.v20-3866
http://dx.doi.org/10.1214/EJP.v20-3866
http://dx.doi.org/10.1088/1751-8113/48/4/045001
http://dx.doi.org/10.1088/1751-8113/48/4/045001
http://dx.doi.org/10.1088/1751-8113/48/4/045001
http://dx.doi.org/10.1088/1751-8113/48/4/045001
http://arxiv.org/abs/arXiv:1503.03302



