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An infinite array of globally coupled overdamped constituents moving in a double-well potential with nth
order saturation term under the influence of additive Gaussian white noise is investigated. The system exhibits
a continuous phase transition from a symmetric phase to a symmetry-broken phase. The qualitative behavior is
independent on n. The critical point is calculated for strong and for weak noise; these limits are also bounds for
the critical point. Introducing an additional nonlinearity, such that the potential can have up to three minima, leads
to richer behavior. There the parameter space divides into three regions: a region with a symmetric phase, a region
with a phase of broken symmetry and a region where both phases coexist. The region of coexistence collapses
into one of the others via a discontinuous phase transition, whereas the transition between the symmetric phase
and the phase of broken symmetry is continuous. The tricritical point where the three regions intersect can be
calculated for strong and for weak noise. These limiting values form tight bounds on the tricritical point. In the
region of coexistence simulations of finite systems are performed. One finds that the stationary distribution of
finite but large systems differs qualitatively from the one of the infinite system. Hence the limits of stationarity

and large system size do not commute.
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I. INTRODUCTION

Noise in nonlinear systems can induce many nontrivial
effects such as stochastic resonance [1], stochastic trans-
port [2], or noise-induced transitions [3]. In spatially extended
systems [4,5] the dynamics at one system site depends on its
neighboring sites. In this paper we deal with global coupling,
where all sites are coupled to each other, which might be
interpreted as a mean field approximation of systems with
local coupling. We consider anharmonic systems with additive
Gaussian white noise

Xi =— 0, UX) + (1), (D

where i = 1,...,L and x denotes the vector of all x;. The
potential U consists of a single-particle potential Uy, which is
felt by each particle, and a two-particle interaction potential
Ui, which is felt by each pair of particles and that depends
only on the distance between the particles

Y Umxi—xp). ()

1<i<j<L

L

1

Ux) = E Uo(xi) + T
i=1

The &; are delta-correlated Gaussian white noise of strength o':

(E(DEj(5)) = 028,81 — 3), 3)

where (-) denotes the expectation value.

We are interested in nonlinear systems, which means
either Uy or Ui, are anharmonic potentials. In this paper
we examine anharmonic single-particle potentials Uy and
harmonic coupling

D,
Uin(r) = =17, “4)
2
with coupling coefficient D. Harmonic coupling between

neighboring sites can be obtained as a discretization of
the diffusion operator in spatially extended systems. Thus
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the present system can be conceived as the mean field
approximation of spatially extended diffusive systems; cf.,
e.g., Refs. [4,5].

The system (1) can equivalently be described by the Fokker-
Planck equation

L L
8, p(x.1) = Zl —,, ; —0, U — axj%z PO
4)
which has the stationary solution
1 2
ps(x) = 7 &P [—;U (X)} (6)

with normalization

VA =/ dxexp [—%U(x)]. @)
RL o

The empirical measure defined by

L
1
L — ,
Pe(AD) = o ; Lalxi(0)] )
indicates how many particles are in the set A at time ¢, where
14 denotes the indicator function

1 ifxeA
0 otherwise.

La(x) == { (€))

The empirical measure converges for L — oo to a probability
measure ., that is related to the density p(x,t) by

mi(A) = //; p(x.1)dx. (10)
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This probability density is the solution of the nonlinear Fokker-
Planck equation [6,7]

0, p(x,t) = — 0 { |:—8on()6) + D/ x'p(x',t)dx’

o2
—Dx—;&x}p(x,t)}. (11

The stationary solution is

1 2 1
ps(x,m) = —exp{——|Up(x) + =Dx* — Dmx |} (12)
Z o2 2
with normalization

0 2 1
Z = / dxexp{——| Up(x) + —Dx*>— Dmx |}, (13)
oo o? 2
where the mean field m has to satisfy the self-consistency
equation [8]

o0

m:/ dxxps(x,m). (14)
—00

One can reformulate this condition on m using the self-

consistency map

oo

F(m) := / dx'x' ps(x’,m). (15)
—00

Fixed points of this map satisfy the self-consistency condi-

tion (14). For certain types of single-particle potentials Uy we

analyze these fixed points in detail.

In Sec. II we consider double-well potentials. Systems
with such potentials but with multiplicative noise have been
studied, e.g., in Refs. [9,10], and with both additive and
multiplicative noise, e.g., in Refs. [11,12]. The model with pure
additive noise and the single-particle potential with quartic
saturation term Uy = (a/2)x> — (1/4)x* was introduced by
Kometani and Shimizu [13], and later it was intensively
studied [7,8,11,12,14-16]. It exhibits a continuous phase
transition from a symmetric phase to a phase of broken
symmetry at a unique critical point [14,16].

We show that for double-well potentials with higher order
saturation term the qualitative behavior of the infinite system
subject to additive noise is the same. There exists a continuous
symmetry-breaking phase transition at a unique critical point.
We prove the existence and uniqueness of the critical point and
calculate tight lower and upper bounds for the critical point
that are assumed in the limits of strong and weak noise.

In Sec. III we deal with more complicated single-particle
potentials that can have up to three local minima. Potentials of
this type in a less general form have been studied in Refs. [17—
19] but with multiplicative and additive noise. We find that for
the infinite system the phase space divides into three regions, a
phase with only stable symmetric solutions, a phase of broken
symmetry, and a phase where stable symmetric and symmetry-
broken solutions coexist. The transition between symmetric
and symmetry-broken phase is continuous. On the other hand,
the transitions between the region of coexistence and one of the
other phases are discontinuous. A noise-induced discontinuous
transition was first reported in Ref. [20]. All three phases meet
in the tricritical point. We prove tight bounds for the tricritical
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point that are assumed asymptotically for strong and for weak
noise.

We further sample the stationary center of mass distribution
for systems of finite size in the region of coexistence using
patchwork sampling [21]. We find that the two limits of infinite
observation time (or stationarity) and infinite system size do
not commute. If the limit of infinite system size is performed
first, there are three stable stationary solutions from which two
are breaking the symmetry and one is symmetric. If, on the
other hand, the limit of infinite observation time is performed
first, the distribution is always symmetric. Depending on
parameters it consists either of a peak at zero or of two peaks
located at the nonzero fixed points of the mean field of the
infinite system.

Section IV summarizes our main conclusions and gives a
brief outlook. Technical discussions and mathematical proofs
have been moved to the Appendices.

II. DOUBLE-WELL POTENTIAL

The case

Uo(x) = —2x2 4 14 (16)
CT T Ty
with harmonic interaction (4) was intensively studied, e.g., in
Refs. [7,8,13—16]. The one-particle potential is a double-well
potential where the barrier is tuned by the parameter a. The
interaction is harmonic with coupling strength D. The system
shows a phase transition in the thermodynamic limit, L — oo.
Given two of the parameters a, D,o > 0, there exists a unique
critical value of the third one that separates a symmetric phase
from a phase of broken symmetry [16]. In the symmetric phase,
as Shiino [15] showed, ps(x,m = 0) is the only stationary
solution of Eq. (11). In the symmetry-broken phase ps(x,m =
0) is an unstable solution of Eq. (11), and ps(x,m = m,) and
ps(x,m = —m_ ) are the two stable solutions of Eq. (11), where
+m . are the two nonzero fixed points of the self-consistency
map (15); cf. Ref. [15].

We are going to generalize the results of [16] for higher
order saturation terms considering

U, —_4% l n
o(x) = 2x +nx (17

forn = 6,8,10, ... and the same harmonic interaction poten-
tial (4). It is possible to reduce the number of parameters by
one through a rescaling of space and time. However, we keep
all parameters since they have a physical meaning as noise
strength, coupling strength, and potential barrier height.

A. Self-consistency map

The self-consistency map (15) has for the above choice of
U) the following properties (cf. Fig. 1):

F)0) =0, (18)

F(m) = —F(—m), (19)
F'(m)<0 form =0, (20)
F'(m) > 0 form — oo (21)
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FIG. 1. Self-consistency map (15) forn =4,0 =1, D =1, and
a = 0.5 < a. (blue line) and fora = 1.5 > a, (red line). Fixed points
of the map occur at the intersection with the straight line and are
indicated by circles. In the symmetric phase (blue line) there is only
one fixed point at m = 0 which is stable. In the symmetry-broken
phase (red line) m = 0 is unstable, and there exist two unstable fixed
points, m and m_ = —m_. One of these fixed points is selected by
initial conditions.

for k =0,1,2,.... Equations (18) and (19) follow directly
from the definition (15); the inequalities (20) are a conse-
quence of the Griffiths-Hurst-Sherman (GHS) inequality [31],
and (21) can be directly obtained by asymptotic evaluation of
the integral occurring in (15). Furthermore the function F(-)
is continuous and arbitrarily often continuously differentiable.
For positive a,D, and o, the function F is continuous and
arbitrarily often continuously differentiable also with respect
to these parameters.

Equation (18) states that m = 0 is always a fixed point of
the self-consistency map. If F’(0) < 1 we conclude from (20)
that m = 0 is the only fixed point; it is stable. On the other
hand, if F'(0) > 1, m = 0 is an unstable fixed point and we
follow from (20) and (21) that there is exactly one positive
fixed point m of Eq. (15) and due to the symmetry (19) there
is also exactly one negative fixed point m_ withm, = —m_.
These nonzero fixed points are stable and break the reflection
symmetry x <> —x. This argumentation follows Dawson [14],
who stated equivalent results for the case n = 4.

B. Phase transition condition

Stable fixed points of the self-consistency map (15)
correspond to stable stationary solutions of the nonlinear
Fokker-Planck equation (11) [15]. Hence the transition from
symmetric to symmetry-broken solutions occurs when

o2

F'(0)=1 Ym0 = =,
0) < (X ) m=0 D
where (-),,—o denotes the expectation value with respect to

ps(x,m = 0); cf. Eq. (12).

(22)

C. The critical manifold

We consider for the moment D and o to be fixed parameters
and a as a control parameter. For D < 0 there is no symmetry
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breaking as can be seen from Eq. (22); therefore we consider
only D > 0. For the symmetric solution, the second moment
as a function of a has the following properties:

lim (x*),1=o(a) = 0, (23)
lim (x2),u—0(a) = 400, (24)
1
30 (x*)m=o(a) = = (MY mmo — (X2 )

1
= 0—2[<(x2 — () m=0)Im=ol > 0. (25)

The first two properties follow from an asymptotic evaluation
of the expectation value. The third property follows from direct
calculation. From the properties (23) and (24) it follows by
mean value theorem that there exists a critical value a. such
that

2

(%) m=o(ac(a,D),0,D) = ;’—D

From the monotonicity (25) we conclude that this critical point
is unique. Furthermore we find that

F'(0) <1 foraZ a.

(26)

27

Hence below and at the critical point a < a, the system is in
the symmetric phase, and above the critical point a > a, the
system is in one of the symmetry-broken phases.

We consider a, = a.(o2, D) as a function of noise strength
and coupling strength that is well defined for o,D > 0. We
will show that a.(c2,D = D) considered as a function of
o2 for arbitrary but fixed Dy > 0 assumes all positive values.
Equivalently for some fixed oy > 0, ac(aoz, D) considered as a
function of D assumes all positive values as well. It follows
that for arbitrary positive a,0 there exists a critical value D,
such that

2

0—0’ (28)
2D (a,o0p)

and for arbitrary positive a, Dy there exists a critical value o,
such that

(x*)m=o(a,00, D(a,00)) =

o2(a,Dy)

(¥} m=ola, Dg,0.(a, Dy)) = 2D

(29)
We will further show that a.(0'2, D) is invertible with respect
to each argument from which follows that the critical values
o.(a,D), D.(a,o) are unique.

Since a.(c2, D) is the zero of a function that is continuous
and arbitrarily often differentiable [cf. Eq. (26)], a. itself is
continuous and arbitrarily often continuously differentiable.
Hence to show the invertibility it suffices to show that a, (6%,D)
is monotone with respect to both arguments. The monotonicity
is proved in Appendix A.

In the next subsection we will show that

o2 n/2—1 o2 n/2—1
(E) < a.(o,D) < (n — D”(E) , (30)
where (n — 1)!! denotes the product of all odd positive integers

from one to n — 1. We conclude from these bounds that if one
of the parameters o,D > 0 is fixed, the infimum of a. as a
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function of the other parameter is zero and the supremum is
infinite. Since a,. is continuous it follows that it assumes all
positive values.

Hence we have shown that the critical manifold is well
behaved, which means that, given two of the positive system
parameters a, D, o, there exists a unique critical value for the
third parameter that separates the symmetric phase from the
phase of broken symmetry. The qualitative behavior of the
system is the same as for n = 4 [16].

We can develop the self-consistency map around the critical
point to obtain the normal form:

F(m) ~ F'(O)m + ; F"'(0)m’. (31)

Note that F”(0) = (2D /o?)3k4 < 0at the critical point, where
the fourth cumulant x4 is negative as shown in Appendix B;
cf. Eq. (B28). Close to the critical point we have F'(0) =
1+ c(a — a.) + O[(a — a.)?], with some constant ¢. Hence
the stable fixed points m 4 of the self-consistency map grow
with exponent 1/2 as a function of a — a., the distance to the
critical point, when a — a, is small.

D. Tight bounds for the critical point

From the symmetric stationary solution

1 2 (a—-D , 1
pm=0=Lep[ 2 (2e L] @
Z o?

2 n
[cf. Eq. (12)], we find for k = 0,1,2, ...

Zno(x* Yo = / dxx* exp I:_z<a 2 _xn>i|
—00 o 2 n

— _; * dxi[(a _ D)xk+2 _xk+n]
k+1J_o 2

2(fa-D , 1,
X exp|—— X°— —x ,  (33)
o 2 n

and hence

2
%(k + D{xF) 0 = (K mg — (a — DY) s, (34)

As we prove in Appendix B, for all parameter values it
holds

(Ym0 — (X2 > 0, (35)
(Xm0 — (n = DI, < 0. (36)

Inserting the moment relation (34) for k =0 we find the
bounds (30) for a.. These bounds are tight in the sense that
they are asymptotically assumed in the limits of strong and
weak noise, respectively. Since the proof is somewhat lengthy
and technical we have transfered it to Appendix C. In Fig. 2
the critical control parameter a. is displayed as a function of
(62/2D)"*7! for n = 6. The values of a, have been obtained
by numerical evaluation of Eq. (22). All values lie between the
bounds (30). For weak noise a, is close to the upper bound;
for strong noise it is close to the lower bound.
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FIG. 2. Critical point a,. as a function of (62/2D)* for n =6
on a double logarithmic scale. Numerical results for D =1 and
different noise strengths are displayed by the solid line (blue). Tight
bounds on a, are given by (30). The upper bound (red dashed line) is
asymptotically reached for weak noise; the lower bound (red dotted
line) is asymptotically reached for strong noise.

III. COMPETING NONLINEARITIES

In the previous section we demonstrated that the qualitative
behavior of the system (17) does not depend on the order of
the saturation term. However, two competing nonlinear terms
may change the principal behavior. We consider the system

Uy = %2~ 2o Lis (37)
R 4 6

with the same interaction potential (4).

A. Equal sign of nonlinearities

If b < 0, the quartic and the sixtic term in Eq. (37) have
the same sign. In this case there is not really a competition
between the two terms. Many properties of the system are
similar to the system of the previous section, for example, the
properties (18)—(21) of the self-consistency map. We conclude
from these relations that there is a symmetric phase and a
phase of broken symmetry and that there exists a critical point
a, for positive parameters D,o > 0 that is given by F'(0) =
1. The normal form of the system close to the critical point
remains

F(m) ~ F'(O)m + + F"(0)m?, (38)

and developing F'(0) = 1 + c(a — a.) + O[(a — a.)*] with
some constant ¢ yields the mean field exponent 1/2 for the
stable fixed points close to the critical point. In this case the
system behaves qualitatively as the systems considered above.

B. Opposite sign of nonlinearities

If b is positive, the competition between the negative quartic
term and the positive sixtic termin Eq. (37) leads to new effects.
The properties (18), (19), and (21) of the self-consistency map
remain valid also for (37), but the property (20) is not true in
general. Therefore the self-consistency map can exhibit more
complex behavior, and it is not straightforward to generalize
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FIG. 3. Phase diagram and self-consistency map for competing
quartic and sixtic nonlinearities [cf. Eq. (37)] for D=0 = 1.
(a) Phase diagram of the infinite system in the (a,b) plane. The lines
indicating a continuous transition (red, between phase I and phase II)
and a discontinuous transition (blue, red between phase II and phase
III) meet in the tricritical point (purple spot). The tricritical point lies
at the intersection of the curves defined by F’(0) = 1 (red line) and
F”"(0) = 0 (turquoise dashed line). The lines indicating the transitions
separate the trivial phase I where m = 0 from the phase II where m
assumes one of the nonzero values m, or m_ = —m, (Symmetry
breaking), and from the phase III where the trivial solution coexists
with solutions of broken symmetry. (b) Self-consistency map [cf.
Eq. (15)] with representatives for each of the phases. The fixed points
are indicated by circles. Phase I: blue line with a single fixed point
m = 0 which is stable, (a,h) = (—1.2,2.5). Phase II: red line with
three fixed points, the nonzero ones are stable, (a,b) = (—0.5,3.5).
Phase III: green line with five fixed points, where m = 0 and the two
outermost ones are stable, (a,b) = (—1.2,2.5).

the analysis of the previous sections. From a numerical
evaluation of the self-consistency map we have observed three
characteristic cases that are presented in Fig. 3(b). In phase
I the stable fixed point m = 0 is the only fixed point of
the self-consistency map. In phase II m = 0 is an unstable
fixed point, and there are two nonzero stable fixed points
m, = —m_. There is another phase, phase III, where stable
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symmetric and symmetry-broken solutions coexist. Hence in
phase IIl m = 0 is a stable fixed point, there are two unstable
fixed points m s = —m_ s, and two more stable fixed points
mys=—m_;.

From phase I, changing parameters one can reach phase 11
via a supercritical pitchfork bifurcation and phase III via a
saddle-node bifurcation, when a new fixed point m* with
F(m*) = m* and F'(m*) = 1 appears at the transition. Fur-
thermore phase III is reached from phase II via a subcritical
pitchfork bifurcation, where the unstable fixed point m = 0
gains stability. The pitchfork bifurcations occur at m =0
and the transition condition is F’(0) = 1; cf. Eq. (22). For
the saddle-node bifurcation it is not so easy to localize m*
since its occurrence depends on global properties of the
self-consistency map.

Although in general a rigorous analysis of the self-
consistency map is difficult we can mathematically found our
observation locally. Consider a parameter regime of phase III,
where all fixed points are close to m = 0. In phase III we
have F'(0) < 1, and in any case F”(0) = 0; cf. (20). In order
to have a positive fixed point close to zero we require that
F”(0) > 0, and to have a second positive fixed point close to
it, we need F"'(¢) < 0 for some small, positive ¢. Therefore,
as F®(0) = 0 [cf. Eq. (18)], F®(0) < 0 is necessary. Hence
to be in phase III and have all fixed points close to m = 0 the
requirements are

F'(0) < 1, (39)
F"(0) > 0, (40)
F0) < 0. 41)

If the first inequality is reversed we are in phase II; if the
second condition fails we are in phase I. Hence a point that
satisfies

F0) =1, (42)
F"(0)=0 (43)

is twofold critical. It is called the tricritical point due to the fact
that it lies at the intersection of all three phases. We will show
that at the tricritical point and also in a neighborhood of it, the
condition (41) is satisfied. Thus the picture described above is
rigorous at least in a neighborhood of the tricritical point. In
order to prove (41), in fact we need only the condition (43).
Note that the derivatives of the self-consistency map coincide
up to a factor with the cumulants of the stationary probability
distribution pg(x,m)

F®®m) = 2D /o) kit1, (44)

where k =0,1,2, ...
need to show that

and «y is the kth cumulant. Hence we

ke <0 45)

in a neighborhood of the parameter set where k4 = 0 atm = 0.
The proof is given in Appendix D.
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Close to the tricritical point we can develop the self-
consistency map for small m as
F(m) =am + Bm> + ym®, (46)

where «,f,y are functions of the parameters a,b,o,D, and
y < 0 and at the tricritical point 8 = 0. Fixed points of the
self-consistency map are real roots of

(@ — 1)+ pm* + ym* (47)

and m =0. For « < 1 and 8 < 0,m =0 is the only fixed
point, and the system is in phase I. For > 1,m =0 is
unstable, and there are two more fixed points that are stable:

— 2 —
Y R LS

3 1,7 (48)

m+/_ =4+

The system is in phase II. If « < 1 and B > 0 the system is
either in phase I or in phase III. If % < "7_1 the system is in

phase L. If % > "‘7_1 the system is in phase III. The unstable
fixed points are

—B ﬂ_2+1—a

_us = — = , 49
my/— us 2y 4)/2 ” (49)
and the stable fixed points are m = 0 and
B [ -«
== | — — 50
Mg/ 2y e + (50)
The saddle-node bifurcation occurs when ¢ < 1, 8 > 0 and
2
—1
F el (51)
4y? %

The coefficients in Eq. (46) can be expressed in terms of the
cumulants according to Eq. (44). We have

2D, 1/2D\’
a=?(x), '3=8? K4,

1 (2D’

Inserting these coefficients into Eq. (51) the condition for the
saddle-node bifurcation close to the tricritical point can be
rewritten as

2 2
o3k

2D 6kg
In analogy to the previous cases we can investigate the behavior

of the stable fixed points close to the critical point when the
parameter a is varied. The leading behavior is

(x?) (53)

a=1+ci(a—ay), (54)

B = caa — aw), (55)

Y =y +c3la —de), (56)

where ¢; are some constants. In particular ¢ =

(2D /o*)(x*) — (x?)2 > 0. Hence we are in phase II and the
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leading behavior for the stable fixed points is according to
Eq. (48),

ms A i\/ &i(a — ae) +Véla — ae) ® &a —a)', (57

with some positive constants ¢1,¢,,¢. Thus the critical expo-
nent is 1/4 at the tricritical point.

In Fig. 3(a) we present the phase diagram in the (a,b)
plane. The phase boundaries have been obtained by numerical
evaluation of the corresponding conditions. The discontinuous
transition between phase I and phase III was obtained from
numerical evaluations of the full self-consistency map (15)
(solid blue line) and as a solution of the approximation (53)
close to the tricritical point, which cannot be distinguished on
the scale of the plot. In Fig. 3(b) the self-consistency map is
shown with one representative for each phase.

C. The tricritical point

The point where all three phases meet is called the tricritical
point. It is determined as the intersection point of the lines
defined by

F'(0y=1, F"0)=0, (58)
which is equivalent to
2 o’ 4 2,2
() =o5 =307 =0 (59)

see Eq. (44). We used that m = 0 is the only fixed point of the
self-consistency map at the tricritical point, and hence all odd
moments are zero. Therefore at the tricritical point we know
the second and the fourth moment. Analogously to Eq. (34)
we find for k =0,1,2, ...

0.2
5 (k+ DY umo = (570,20 — B(XE),20
—(a — D)(x*%),,0 (60)

from partial integration in the definition of the kth moment.
Hence at the tricritical point all moments can be calculated
from Eqgs. (59) and (60). In particular we find

2\ 2 2
(e =36 ) +a. 61)
¢ 2D 2D

For any extended probability distribution we have due to
the Cauchy-Schwarz inequality

() < () (x°), (62)
which leads with Eq. (59) to
(x%) — 9(x?)2, > 0. (63)
On the other hand we prove in Appendix D that
(x%)c — 15(x?)3 < 0. (64)

Note that this is the same as (35) for n = 6, albeit it
holds for different reasons here. These moment inequalities
translate with Egs. (59) and (61) into bounds for the tricritical
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FIG. 4. a —3bo?/(2D) at the tricritical point (a.,b.) as a
function of (62/2D)? on a double logarithmic scale. Numerical results
for D = 1 and different noise strengths are displayed by the solid line
(blue). Tight bounds for the tricritical point are given in (65). The
upper bound (red dashed line) is asymptotically reached for weak
noise, the lower bound (red dotted line) is asymptotically reached for
strong noise.

point:

o2\ o2 o2\
o — 3be— <15 — | . 65
<2D> < ae + lCZD < (2D> (65)
These bounds are tight in the sense that they are asymptotically
assumed in the limits of strong and weak noise, which can be
shown using a similar series ansatz as used in Appendix C.
In Fig. 4 we present numerical results for the tricritical
point and compare it to its bounds for strong and weak
noise.

D. Simulations in the region of coexistence

Simulations are performed always for systems of finite
size. For finite systems the stationary solution ps(x) of the
nonlinear Fokker-Planck equation (11) given by Eq. (6) is
symmetric with respect to zero. For the infinite system, as
just discussed in detail, there is a breaking of symmetry.
There exists a coexistence region [32] in parameter space
where two kinds of stationary solutions of the nonlinear
Fokker-Planck equation (11) occur, a symmetric one and two
symmetry-broken solutions.

We are interested in simulations of necessarily finite
systems in the coexistence region of the infinite system. It
is useful to investigate the center of mass

1 L
R::Z;Xi

since in the limit of large system sizes it converges to the mean
field

(66)

lim R = m.
L—oo

(67)
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For finite systems R is a stochastic variable with stationary
distribution

1 L
p(R) = fR L dx6<R - Exl)ps(x). 68)

We expect that R fluctuates around stable fixed points of the
self-consistency map (15) which means that in the region of
coexistence the distribution has three peaks. It is interesting
to investigate by simulations which of these peaks have the
largest weights [33].

As a standard simulation needs to much time to reach
the stationary distribution we use the method of patchwork
sampling [21] where the state space is cut into many patches
that are then simulated separately. Eventually the results from
the simulations of each piece are used to obtain the stationary
distribution of the original model. In the present system the

"l W _-
107° | .
10710 F :
S Z ;
£ 1071 .
1072 F ]
10-2 | @

| | |
-2 -1 0 1 2

R

100 - T = T =
1075 F -
107 F ]
& Z ;
g 1071 -
1072 F .
10725 _ (b) _

| | |
-2 -1 0 1 2

R

FIG. 5. Stationary center of mass distribution ps(R) for L =
200,D=1,0 =1,b=4.5 and (a) a = —3.48,-3.50,...,-3.60.
The top solid (blue) line presents a = —3.60, and lower (gray) lines
show higher values of a. System parameters are such that the infinite
system is in phase III except for the lowest line, where it is in phase II.
(b) a = —3.62,—3.64,—3.66,—3.68. The top solid (red) line shows
a = —3.62, and lower (gray) lines show smaller values of a. System
parameters are such that the infinite system is in phase III except
for the lowest line, where it is in phase I. Simulations obtained via
patchwork sampling with time step size At = 1073 and 107 time steps
for each patch.
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potential (37) can have up two three minima that are separated
by up to two potential barriers. Each particle might need a
long time to overcome such a potential barrier. That is why the
stationary distribution is assumed only after a very long time.
We consider the case of two local potential maxima at Xmax, + >
0 and xmax— < 0, wWith Xmax + = —Xmax,—. Then we use the
following partition of the state space into patches labeled by
indices k,/. A configuration of the state space belongs to the
patch X, if there are exactly k coordinates x; with X; < Xmax,—
and exactly / coordinates x; with x; > Xmax 4.

In Fig. 5 we present simulation results for the center of
mass distribution for system size L = 200 from the region of
coexistence and slightly beyond. In the region of coexistence
the distribution has three local maxima which correspond to
the stable fixed points of the self-consistency map. However,
the weight of these three peaks can differ dramatically. We find
two typical scenarios.

In the first one, presented in Fig. 5(a), the peaks around
the two stable nonzero fixed points of the self-consistency

100F A A
1072 ¢ \
1074 H s

ps(R)

(a)

H = ot

1010 |l I
| (b) [||L
10—12 1 ] 1
-2 -1 0 1 2
R

FIG. 6. Stationary center of mass distribution ps(R) for D =
1,0 =1,b=4.5, and L = 25,50,100,200,400 for (a) a = —3.60
and (b) a = —3.62. The system size L = 200 is colored [blue (red)]
and represents the same data as the colored curves in Fig. 5. Upper
(gray) lines at R = 1 correspond to smaller system sizes, and the
lowest (gray) line corresponds to L = 400. Simulations obtained via
patchwork sampling with time step size At = 1073 and 107 time steps
for each patch.
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map dominate the peak around zero. Coming closer to
the boundary towards the symmetry-broken phase of the
infinite system (phase II), i.e., for decreasing a, the central
peak loses weight, and crossing the boundary it disappears
completely.

In the second scenario [see Fig. 5(b)] the central peak
dominates the outer peaks. Coming closer to the boundary
towards the symmetric phase of the infinite system (phase 1),
i.e., for increasing a, the outer peaks lose weight and disappear
crossing the boundary.

In Fig. 6 we present the scaling of the center of mass
distribution for different system sizes L for the two scenarios.
In either case the weights of the suppressed peaks decrease at
least exponentially with increasing L (see also Fig. 7).

We expect that in the limit L — oo the weight of either the
central peak (scenario one) or the outer peaks (scenario two)
goes to zero. We conjecture that the region of coexistence can
be divided into two parts separated by some critical line, where

10° - o0 © ° o
.
@ 107t 3 - 3
%
g 10_2 E | 3
v d
8 [
2 107° 3
- (a) ]
1074k =
E | | | | | | | 1
0 50 100 150 200 250 300 350 400
L
| | | | | | | |
100 E_ . - ] u ]
[ [}
z 1071 E ° 3
< F 1
.80 [ °
5 1072 E
A4 F ]
g [
21077 3
- (b) .
1074 E
E | | | | | | | 1
0 50 100 150 200 250 300 350 400

L

FIG. 7. Peak weights of the central peak (red squares) and the
sum of the outer peaks (blue circles) of the center of mass distribution
of Fig. 6 in dependence on the system size. System parameters are
D=1,0=1,b=4.5and(a)a = —3.60 and (b) a = —3.62.1In (a)
the weight of the central peak tends to zero at least exponentially and
the sum of the weights of the outer peaks tends to one. In (b) the sum
of the weights of the outer peaks tends to zero at least exponentially,
and the weight of the central peak tends to one.
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in one part scenario one is springing into action and in the other
part scenario two. It is an interesting topic of future research
to calculate this critical line.

We further see on Fig. 6 that all peaks, also the suppressed
ones, become sharper for larger system sizes. Hence locally
the suppressed peak gains stability whereas it globally loses
stability. That means if we consider larger and larger systems
that are prepared initially in the suppressed state, they will
stay there longer and longer. If, however, we wait infinitely
long each time, then the probability to find the system in the
suppressed state will go to zero for large system sizes.

We have simulated systems of size L = 25,50,100,200 for
all parameters used in Fig. 5. In Figs. 6 and 7 we present
only results for values of a which are closest to the boundary
separating the two scenarios where either the central or the
outer peaks decrease with increasing system size L. Close
to this boundary the decrease is at least exponentially with
increasing L; for larger distance the decrease is much stronger.

IV. CONCLUSIONS

We have considered the overdamped motion of infinitely
many globally coupled particles in an anharmonic potential
under the influence of additive Gaussian white noise. In
the case of a double-well potential there is a continuous
symmetry breaking phase transition. We proved the existence
and uniqueness of the critical point, i.e., there are no reentrance
transitions. We further proved tight upper and lower bounds
for the critical point that are assumed in the limits of weak and
strong noise.

In case of a potential with three minima the phase space
divides into three regions. In phase I there exists only one
symmetric solution. In phase II there are two symmetry-
breaking solutions, and in phase III symmetric and symmetry-
breaking solutions coexist. All three phases meet in one point,
the tricritical point. We proved tight bounds for this point that
are assumed for weak and strong noise.

We further investigated the region of coexistence, phase
III, by simulations of the system of finite size. We sampled
the stationary probability distribution of the center of mass. In
the limit of infinite system size, L — oo, the center of mass
R converges to the mean field m, which is deterministic. In
contrast, for finite systems the center of mass is a fluctuating
stochastic quantity with the stationary distribution (68). We
found that the mean field of each stationary solution of
the infinite system corresponds to a local maximum of the
center of mass distribution of finite but large systems. Hence
in the region of coexistence there are three local maxima,
and we investigated the weights of these three peaks. Our
simulation results strongly suggest that the weights of either
the central peak or of the two outer peaks goes to zero at least
exponentially when the system size goes to infinity.

Thus we found that in the region of coexistence the two
limits of infinite system size and infinite observation time
do not commute. When the limit of infinite system size
is performed first, we find two symmetry-broken and one
symmetric solution. When on the other hand the limit of
infinite observation time that means stationarity, is performed
first the stationary center of mass distribution, depending on
parameters, consists of either one peak at zero or two peaks

PHYSICAL REVIEW E 94, 062135 (2016)

located at the two stable fixed points of the mean field of the
infinite system.

Naturally, the question arises which of the two limits is
physically more relevant. In a typical situation with very large
system size the infinite system limit should be considered first
since a stochastic switching between the three local maxima
of the center of mass distribution is typically not occurring
at all within the observation time and the behavior of the
system depends highly on initial conditions. If, however, the
system size is not too large and the observation time is long
enough to switch between the local maxima, the other order
of limits can become relevant, and, depending on parameters,
one type of solution occurs in this case. It is important to know
the complete stationary distribution also when a system is
perturbed by an external time-dependent signal which allows
switching between the peaks; see, e.g., Ref. [22].
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APPENDIX A: MONOTONICITY OF
THE CRITICAL POINT

We will show that for a double-well potential with satura-
tion term of order n > 6 [cf. Eq. (17)] the function a.(c?,D)
is strictly monotone with respect to both arguments. At the
critical point we always have m = 0, so we drop this subscript
here.

From Eq. (22) we have at the critical point (x?) = o2 /(2D).
Differentiating with respect to D gives

d o? 2,
- = =_ . Al
S == = =) (A1)
On the other hand, considering (x?)(a.(c,D),02, D) we have
d
(x%) = 8p(x?) + 8, (x*)dpac@®, D). (A2)

dD
Using the explicit expression for pg(x,0) [cf. Eqs. (12)
and (13)], we calculate

1
8 (%) = =0 (%) = —((x) = ()D). (A3
Inserting this into (A2) we obtain with (A1)
(x*) —3(x?)?
dpac(o?,D) = o oy <0 (Ad)

since the numerator is negative as stated by Lemma 3 of
Appendix B and the denominator is positive for any extended
distribution.

In a similar way we compute the dependence of (x?) on o2
It is convenient to substitute s := 2/ o2, then

d 1 2,2
il =——— _=_D . A5
) = (x?) (AS5)
On the other hand
d
o) = 0,07 + 0, (F)dyac(s, D). (A6)
s
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Similar as above we calculate using Eqs. (12) and (13) for
ps(xso)

1
— = (") = (")), (A7)

To compute (x") and (x"*2) we evaluate Eq. (34) for k=0
and k = 2, observe 02/(2D) = (x2) and arrive at

(A8)

(x"*2) = 3D(x*)? + (a. — D)(x*). (A9)
With these moments and Egs. (A3) and (A5)—(A7) we obtain
dsa.(s,D)
(2 — Dlac((x*) — (x3)?) — D((x*) — 3(x?)?)]

— < 0.

s((x) — (x2)?)

(A10)

The right-hand side is negative since 2/n — 1 < 0, (x*) —
(x*)2 > 0 for any extended distribution, (x*) —3(x?)2 <0
as stated by Lemma 3, D > 0 and a, > 0; cf. (30). Thus
d,2a.(c%,D) > 0.

APPENDIX B: MOMENT INEQUALITIES

We prove the moment inequalities (35) and (36). The proof
of (35) is a consequence of the Cauchy-Schwarz inequality. If
n/2 is even we have for any extended distribution

(") < (x"), (B1)
and if n/2 is odd
(" < () (7). (B2)

For n = 4 the claim (35) is directly given by (B1), and for
n > 4 it follows by induction from (B1) or (B2).

The proof of (36) uses a comparison between ps(x,m = 0)
and a Gaussian, for which the corresponding expression of the
left-hand side of (36) is zero. To show this we use the following
statement:

Lemma 1. For any even probability distribution and for any
fixed even / > 4 there exist coefficients a ) >0 depending on
only the second moment of the dlstrlbutlon such that

-2 1-2

1/2 =K+ Z Za(l) Kj» (B3)

i=2 j=4

(x'y — (= D!{x

where «; is the kth cumulant and the sums are meant to be
zero if the lower bound on the summation index is larger than
the upper bound.

Proof. By induction. Base case: for [ = 4 the claim holds
as

(x*y = 3(xH? = k. (B4)

For distributions with finite moments we have the general
relation [23]

n .
e, (x") = (]) (x"7) (BS)
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from which we conclude with

o]

(x") =Y ki, (x") (B6)

j=1

that (cf. also, e.g., Ref. [24])

n—1 n—1 »
tn = (x") — < )Kk ("), B7)
1

Note that for even distributions «; = 0 for all odd i. Hence we
find forevenl > 6

-1

-1
= () = (= D)) = (k B l)mx”‘). (BY)
k=4

By induction hypothesis Eq. (B3) holds if / is replaced by
[ — 2. Then, substituting (x'~2) in Eq. (B8) leads to

ki — (XY + (1 — D)2
-4 |—4
=—( =D — =D D> el P
i=2 j=4
lz‘(z— 1) <y
k=
-2 -2
o (x! (B9)
i=2 j=4

Comparing coefficients we find for even / > 8 and i €

2,4,...,1—4),j €@4,6,...,1 —4) the recursion

I-1
“§§)=<j_1> =+ = DixHe ™ > 0. (B10)

For evenl > 6 we have
oy, =311 —1) > 0. (B11)
All other oz@ are zero. Thus the proof is complete.
Although not needed here, the coefficients oz() can be

calculated as well. Equation (B11) gives the 1n1t1al value
aéﬁl = 15 for an iterative solution of Eq. (B10). |

Following a method of Dyson [25] we introduce a Gaussian
probability distribution g(x) that is normalized and has the
same first and second moment as ps(x,m = 0). We aim to con-
struct a polynomial that has the same sign as g(x) — ps(x,m =
0) when nonzero. For the construction of the polynomial the
intersection points of g(x) and ps(x,m = 0) are crucial as they
are the points where g(x) — ps(x,m = 0) changes its sign.
The following lemma states that two intersection points are
not possible.

Lemma 2. If f and g are two even, normalized, continuous
probability distributions with equal variance, and there exists
a > 0 such that

g(x) < f(x) for |x| € [-a,a], g(x) =

then they are identical f = g.
Proof. Consider the quadratic function (x — a)(x + a). It
has either the same sign as g(x) — f(x) or at least one of them

f(x)else,
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is zero. Hence

(x —a)(x + a)lg(x) — f(x)] =0

Assume there exists xo € R with f(xo) # g(xp). Then there
exists an interval (b,c) and & > 0 such that

(B12)

(x —a)x +a)gx)— f(x)] > ¢ (B13)
on (b,c). Therefore
foo dx(x*> — a)[gx) — f(x)] > (B14)

which is a contradiction since f and g are normalized and
have equal variance. Hence f = g. |

Since ps(x,m = 0) and g(x) are both even they must have an
even number of intersection points. Due to normalization zero,
intersection points are not possible. Since these distributions
are not equal, due to Lemma 2, also two intersection points are
not possible. Six or more intersection points are not possible
as well, since the intersection points are real solutions of the
equation

ps(x,m = 0) = g(x). (B15)

Taking the exponential of both sides we find that the solutions
are roots of the polynomial

1 n 2
oF + Bx° + v, (B16)
where 8 depends on the parameter a, the variance of g(x) on
normalization and on the noise strength, and y is basically a
normalization constant but also depends on the noise strength.
The explicit expressions for 8 and y can be given but are not
important. From Descartes sign rule we find that there can
not be more than two positive roots of the polynomial (B16),
and due to symmetry there cannot be more than two negative
roots as well. Hence we find that there must be exactly four
intersection points between ps(x,m = 0) and g(x), and we can
apply the following lemma.

Lemma 3. If f and g are different, even, continuous, and
normalized probability distributions with equal variance and
finite moments, and there exist a, > a; > 0 such that

gx) < f(x)
gx) > f(x) else,

for |x| € [a1,az],

then for all even n > 4 it holds

(") > (") /. (B17)

Proof. Consider the polynomials

gr(x) := x*(x — a)(x + a))(x — @)(x + a)
— 2k _ (a12 +a§)x2k+2 +a2a§x2k
where kK = 0,1,2,.... These polynomials and the function

g(x) — f(x) have either the same sign or at least one of them
is zero, hence

(B18)

f)]=0 (B19)

/ dxqi(x)[g(x) —

[ee]
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Since f and g are not identical and because of continuity we
have even strict inequality

f dxqi(x)[g(x) — f(x)] > 0. (B20)

o]

For n = 4 the claim follows directly from the case k = 0 as

f dxqo(x)[g(x) — ()] = (x*)g — (x*

[e¢]

yr>0. (B21)
Note that the zeroth and second power of x vanish in the above
integral, since f and g are normalized and have equal variance.
For even n > 6 consider the polynomial

n/2-2 n/2
Q(x) := Z @y g (x) =) byx™ (B22)
k=0
One easily checks that
by = aza; 2 b= —ay~ 2
) (B23)
b, = —ay, b, =1,

and all other b; are zero. Multiplication with g — f and
integration yields

0 </ dx Q,(x)[g(x) — f(x)]

n/2

- / 53 buas) = f0L

Inserting the coefficients (B23) into inequality (B24) we find
(x")g — (x — ")), (B25)

where we used again that the zeroth and the second moment
are equal for f and g. Thus the claim follows by induction. l

Taking ps(x,m = 0) as f(x) and a Gaussian with the same
variance and mean as g(x), Lemma 3 can be applied since
ps(x,m = 0) is smaller than g(x) for large enough |x| and
since they intersect in exactly four points. Hence

(B24)

"> ar((x" ),

(") pe < {x")g. (B26)

For a Gaussian all cumulants of higher than second order are
zero. Hence due to Lemma 1

(x")g — (n — D)2 = 0.

With (x?),, = (x?), and (B26) it follows (36). By the same
argument we conclude that

H_3xH? <o.

(B27)

K4 = (x (B28)

APPENDIX C: STRONG AND WEAK NOISE

We show that the upper bound in inequality (30) is assumed
asymptotically for weak noise o> — 0 and the lower bound is
assumed asymptotically for strong noise 6> — 00.

For weak noise we use again the substitution s := 2/02.
From inequality (30) we observe that a. — 0 as 0% — 0.

Therefore we make the ansatz

1 1
a(s.D) = ai(D)— +a(D) 5 + . (ChH
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The phase transition condition Eq. (22) is equivalent to

1 = 2Dsd,, In1, (C2)

&0 D—a. , 1
I =/ dxexp|—s x*+-=x")|. (C3)
oo 2 n

From inequality (30) we find that for fixed D and large enough
s we have D —a, > 0. Hence we apply Laplace’s method
around x = 0 to evaluate the integral (C3)

o0 D _ ¢

/ dx exp ( -5 a xz) exp ( — ix")

oo 2 n
> D—a , s 2.2

= dxexp| —s x7) x| 1——=x"+ 0@ x™)
oo 2 n

_ 2r [ =D n/2
s(D —a.) n D —a,

+ 0(52")}.

1

(C4)

Inserting the ansatz (C1) we find

1 —1n 1 1+n/2
0, Inl = + (e —1) s ——
‘ 2s(D —a,) 2 D —a,

— ! 1 \"?

— ; + L(n — DIsD)™? + 0(s™"?)
2s(D —a.) 2D B ’

(C5)

Inserting this expression into the phase transition condition
Eq. (C2) we obtain

1= +(n— 1)!!(sD)]_"/2% + 0(s™"%).  (C6)

1
I—Bac

Inserting the ansatz (C1) for a, and comparing coefficients at
different powers of s we find

a;=0 fori=1,...,n/2—2, ayp1=m—-1)IID""2
(e7))

Inserting these coefficients in the ansatz (C1) we obtain the
leading behavior of a, for weak noise

0_2 n/2—1
=D — ,
a (n ) <2D>

which is the upper bound for a, in (30).
For strong noise, due to the bounds (30), we use the ansatz

(C8)

ac = ay(D)(@*)"* 7+ ax(D)eH PP+ (CY)
with the substitution
r=0""2 (C10)
the phase transition condition (22) becomes
1= ZTDBQI Inl. (C11)
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We use the substitution x = oy and the symmetry of the
integrand to rewrite the integral (C4) as

/=2 f dy exp[—A ()],
0

_D2 2n
yo+ =y
n

Ac

P(y) = —

According to the bounds (30), for fixed D and large enough
noise we have a. — D > 0, and hence the integrand has its

maximum at
 (ac - D\ /2
Yo = 5 .

Expanding ®(y) around yy yields

(C12)

(C13)

I = 20 expl—1.b(30)] / expl—1.0@(30)/2(y — yo)’]
0

x exp{—A[®P(30)/6(y — yo)® + - 1} dy.

As A — oo the maximum becomes sharp and the main
contribution to the integral comes only from the vicinity of
the maximum. Hence we can change the lower bound to —oo
without changing the behavior of the integral in the limit
A — oo. Expanding the last factor in the integrand around
Yo wWe obtain

I =20 exp[~A®(y0)]

(C14)

x / exp[—A @ (39)/2(y — y0)’I(1 + - --)dy. (C15)
0

Performing the Gaussian integrals we obtain

2
I=20 exp[—m(yo)],/wz—’f(m[l +0o0h]. (C16)

Inserting this expression into Eq. (C11) and using

n—2(a.—D\""?
D(yo) = — . 7 ,

(C17)
) a, — D a, — D n/(n=2)
® —2| c c ’
(o) T ( : )
and the ansatz (C9) we obtain
L= D\Y?
1= 2D<a )
A
n(n—1) {a.—D\2/(n—=2)
_2D - n—Z(A) O)L,I
A a-D ey T 00
Byl U 1)( B )
=2Da}"? + 0(c 7). (C18)

Hence comparing coefficients of highest order in o2 yields

1 n/2—1
a = <E) , (C19)
and thus the leading behavior of a, for strong noise is
0_2 n/2—1
ac ~ (ﬁ) , (C20)

which is the lower bound of a, in (30).
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APPENDIX D: TRICRITICAL POINT INEQUALITIES

We prove that for m = 0 the sixth cumulant «¢ of the
distribution pg(x,m = 0) [cf. Eq. (12)] for the potential (37)
is negative when the fourth cumulant 4 is zero. Therefore we
use the following lemma.

Lemma 4. Consider a zero mean Gaussian probability
distribution g(x) and a smooth even probability distribution
p(x) with the same variance and fourth moment. Let p(x) and
g(x) be not identical and not intersect in more than six points.
Let further g(x) > p(x) for large enough x.

Then g(x) and p(x) intersect in exactly six points and

(x%) > (x°),, (D1)

where (x©) ¢ and (x%) p» denote the sixth moment of g(x) and
p(x), respectively.

Proof. The proof is based on an idea of Dyson’s [25]. Since
both distributions are normalized and not identical they must
intersect at least in one point. The number of intersection points
must be even because both distributions are even. Hence there
can be two, four, or six intersection points.

Assume there are exactly four intersection points
c1, —c¢1, ¢2, and —c;. Then the polynomial

qs(x) := (x —c)x +c)(x — c)(x + ¢2) (D2)

has always the same sign as g(x) — p(x) except when it is
zero. Therefore

f dx[g(x) = p(x)]lga(x) > 0.

o0

(D3)

But the polynomial g4 is only of fourth order and g(x) and p(x)
agree in the first four moments. Therefore the integral (D3)
must be zero, which is a contradiction. For two intersection
points an analog contradiction can be constructed. Hence there
must be exactly six intersection points. Let them be +c; for

PHYSICAL REVIEW E 94, 062135 (2016)

i = 1,2,3 and consider the polynomial

3
q6(x) = [ J(x — c)x + ci).

i=1

(D4)

Again this polynomial has the same sign as g(x) — p(x) except
where it is zero, and thus

/ dx[g(x) — p(x)lge(x) > 0.

o0

(D5)

On the other hand, g(x) and p(x) are both even and therefore
all odd moments vanish; they also agree in the second and the
fourth moment. Hence they coincide in the first five moments.
Thus the only remaining term in Eq. (D5) is

/ dx[g(x) — p(x)lge(x) = (x°), — (x%), > 0, (D6)
which proofs the claim (D1). |

We consider the stationary distribution ps(x,m = 0) as p
and a zero mean Gaussian with the same variance as g of
Lemma 4. As for a Gaussian all cumulants starting from the
third are zero also the fourth cumulant is zero. Since the fourth
cumulant of p is zero as well, p and g must coincide in
the fourth moment. Hence Lemma 4 can be applied and thus
(x%) ¢ > (x6) ».- As g and pg agree in the first five moments,
the sixth cumulant of ps must be smaller than the one of g.
But as g is Gaussian its sixth cumulant is zero, and hence
the sixth cumulant of p; is negative. As the cumulants of p;
depend continuously on parameters k¢ must be negative also in
a neighborhood of the parameter set where x4 = 0. Thus (45)
is proved.

Furthermore we have for the zero mean Gaussian g
(x%)g — 15(x?)3 = K6 + 15(x?)ics = 0. (D7)

As ps and g agree in the first five moments, it follows by
Lemma 4 and the same argumentation as above that for pg at
the tricritical point, where k4 = 0,

(x%)p, — 15(x%)3 < 0.

Thus (64) is proved.

(D8)
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