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Dry Active Matter Exhibits a Self-Organized Cross Sea Phase
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The Vicsek model of self-propelled particles is known in three different phases: a polar ordered
homogeneous phase, also called the Toner-Tu phase, a phase of polar ordered regularly arranged high
density bands with surrounding low density regions without polar order, and a homogeneous phase without
polar order. Here, we show that the standard Vicsek model has a fourth phase for large system sizes: a polar
ordered cross sea phase. We demonstrate that the cross sea phase is not just a superposition of two waves,
but it is an independent complex pattern with an inherently selected crossing angle.
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Active matter is characterized by the transformation of free
energy into motion. The energy is supplied, e.g., by chem-
icals, external fields, or radiation. On the other hand, active
particles dissipate energy into their environment such that
there is an interplay between energy supply and dissipation.

Active entities appear from microscopic length scales or
even below, e.g., for bacteria, Janus particles or molecular
motors up to macroscopic sizes such as for birds, fish,
mammals, or robots. They might be living organisms or
artificially manufactured nonliving objects. Several reviews
give an overview of the field [1-5]. Theoretical descriptions
involve field or kinetic theories, see, e.g., [6—13].

Usually, active particles are surrounded by a fluid such as
water or air. In many cases, the fluid is important, in
particular, due to the conservation of momentum. Examples
are swimming bacteria or artificial microswimmers that
have been subject to intense research over the last decades,
see, e.g., [14-16] for some reviews.

However, there is also a large class of active systems
where the fluid can be neglected, e.g., particles moving
close to a surface which can transfer arbitrary amounts of
momentum to the environment, and thus, momentum
conservation is effectively not an issue. Such systems with
negligible fluid are called dry [1] and can be modeled by
stochastic equations including positive and negative
(activity) dissipation [3]. An important limiting case of
strong activation and dissipation leads to a constant particle
speed, an ingredient that is often directly incorporated in
simplified models. One such model was introduced 25 years
ago by Vicsek ef al. [17] and is still one of the simplest and
most studied models of active matter today. In the two-
dimensional Vicsek model, one considers N point particles
at positions r; that move with constant speed v in individual
directions given by angles ¢;

. [ cos ¢i(1)
0= (Gae ) “)

0031-9007,/20/125(18)/188003(5)

188003-1

where i € {1, ..., N} is the particle index. The directions ¢;
change at discrete instances of time nAt, n € N and remain
constant between those collisions. These interactions are
given by the following rule:
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where the set Q; contains the indexes of all particles j that
satisfy |r; —r;| < R for some interaction radius R. The
function ©(v) returns the angle that describes the direction
of the two dimensional vector v. The &;() are independent
random variables drawn uniformly from the interval
[—7n, zn] with noise strength 5 € [0, 1]. That is, after a
discrete time interval At¢, all particles reorient due to
interactions. The model exhibits a transition towards
collective motion for small noise (or large density) that
was first believed to be continuous [17]. This shows the
nonequilibrium nature of active matter, since in equilibrium
such a transition would be strictly forbidden for short-range
interactions in two dimensions [18,19]. It was found later
that, for large enough systems, the transition is actually
discontinuous and goes along with the formation of high
density bands that arrange regularly into waves [20-22].
For even smaller noise strength (or higher density), there is
another transition towards (on large scales) a homogeneous
polar ordered phase that is also called the Toner-Tu phase
[21,23]. The behavior of the model has been described in
analogy to a liquid-gas transition [23,24]. The disordered
phase at high noise intensities is considered as a gas, see
Fig. 1(iv) for a snapshot of this phase. The phase of polar
ordered bands is considered as the coexistence of a polar
ordered liquid (the bands) and a disordered gas (the
particles between the bands with almost no polar order),
see Fig. 1(iii) and the Toner-Tu phase is considered as a
pure polar ordered liquid, see Fig. 1(i). It was observed in
phase (iii), but close to phase (i), that the bands do not
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FIG. 1. Snapshots of the two dimensional standard Vicsek
model in its four phases: (i) Toner-Tu phase also called polar
ordered liquid (7 = 0.22). (ii) Cross sea phase (n = 0.30).
(iii) Band phase (7 = 0.37). (iv) Disordered phase (n = 0.45).
Dark color represents high particle density. Red arrows indicate
the average direction of motion. Simulations have been started at
random initial conditions. The snapshots have been taken after a
thermalization time of 7 = 2 x 10°. System parameters: R = 1,
v=1, Atr=1, particle number N = 100, system  size
L = 1253.3. On average, there are two particles within a unit
circle. Periodic boundary conditions have been used.

achieve a smectic arrangement, but that they interact
strongly and do not order, see Fig. 2(b) of Ref. [I]. It
was explicitly formulated as a pending issue in [1] whether
this state should be considered separately from phase (iii).

In this Letter, we answer this question by demonstrating
that the aforementioned state represents another fourth
phase of the Vicsek model that has not been reported before
to the best of the authors’ knowledge. In Fig. 1(ii), we show
a snapshot of this fourth phase which looks like a cross sea.
This phenomenon is sometimes observed in oceans when
two wave systems like a swell (waves that are no longer
under wind influence) and a wind sea (waves generated by
wind) are combined, see, e.g., [25]. It is believed to be
particularly dangerous for ships, see, e.g., [26]. Here,
however, this cross sea pattern is self-organized, as there
is no external driving. Crossing bands have been reported in
different models before [27,28]. We demonstrate below that
the cross sea pattern of the Vicsek model is not just a
superposition of two planar waves. Instead, we find that the
particle density at the crossing points of the pattern is much
higher than the sum of two bands. Furthermore, the
crossing angle is inherently selected.

We performed simulations for N = 10° particles in
a quadratic domain of size L = 1253.3 with periodic
boundary conditions. Other system parameters are
R = At = v =1, and the noise strength was varied from

n=02 to =049 in steps of 0.01 simulating 15
realizations [29] for each noise. We made snapshots after
T = 2 x 103 thermalization time steps [30]. For the small-
est noise strengths 7 = 0.20, ..., 0.24, we observe more or
less homogeneous states. Starting from about # = 0.25,
structures are formed, and for # = 0.27, the first cross sea
state arises. For n = 0.29, 0.30, all observed realizations are
in a cross sea state. Starting from # = 0.31, some of the
realizations are clearly cross sea, and some others are
clearly bands, whereas for n = 0.43, 0.44, there are only
band state realizations. Eventually, for n > 0.45, all real-
izations are disordered, see Supplemental Material [31].
Hence, we observe three transitions between four different
phases.

To study the transitions in greater detail, we investigate a
correlation order parameter that was recently introduced in
[32] and suggested to be used in the study of structural
phase transitions, in particular, out of equilibrium. It is a
local integral over the two particle correlation function
formally given by

Co= N [ Galryoma)drdrs0(R = [y O(R = ). (3

where G,(ry,1;) = Py(ry, 15) — P (r;) P (1) for one- and
two-particle probability density functions P; and P,, @ is
the Heaviside function. For isotropic systems, the param-
eter can be expressed in terms of the usual pair correlation
function g(r) as

G = (13) [[latrs=rip -1

X O(R = [r,[)O(R — [rz[)dr,dr. (4)

It is zero for independent particles and large when particles
cluster together. Usually, it changes strongly when drastic
spatial rearrangements occur. Thus, it is appropriate to
study the phase transition that we observe here.

In Fig. 2, we show the average over 15 realizations [29]
and 10* time steps of the C, order parameter in dependence
on the noise strength. It clearly increases at the transition
from phase (i) to phase (ii), then, it decreases from phase
(ii) to phase (iii) and decreases much more at the transition
from phase (iii) to phase (iv). In the average over all
realizations (solid blue line), we cannot detect the transition
between phases (ii) and (iii) that clearly, because for a
relatively large noise range, we find realizations in both
states, as discussed above. However, if we measure the
order parameter for realizations that show bands or cross
sea states separately, we find significant differences in C,,
see red and green lines in Fig. 2. The clear separation of the
two lines shows the discontinuous nature of the transition,
which is also expected due to the different symmetry
properties of the patterns. The observation that, at noise
values where both patterns can coexist, the dominant
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FIG. 2. Structural order parameter C, (blue line) and polar
order parameter p = 1/N|>_; v;| (black line) averaged over 15
realizations [29] and 10* time steps after a thermalization time
of T=2x10% [30] (blue solid line). For the noise values
n =0.31,...,0.40 we find several realizations in the cross sea
phase as well as in the band phase, see Supplemental Material
[31]. Averaging only over realizations that are identified (by
hand) as clearly in the cross sea phase, results in the red upper
line. Analogously, averaging over the band phase realizations
only, results in the green lower line. We see that the correlation
parameter C, increases from the Toner-Tu phase (i) to the cross
sea phase (ii) and then decreases to the band phase (iii) and even
more to the disordered phase (iv). The transition lines from (i) to
(i1) and (i1) to (iii) (vertical dashed and dotted lines) have been
obtained as dips of the Binder cumulant, see Fig. 3. The transition
towards disorder (dash-dotted vertical line) was obtained by hand
as all realizations are bands for 7 = 0.44 and all realizations are
disordered for n = 0.45, see Supplemental Material [31]. Para-
meters are as in Fig. 1.

wavelength of the cross sea pattern is about twice as large
as the one of the band pattern, see [31], provides further
evidence for the discontinuous nature of the transition.
In order to justify whether the cross sea state is really a
different phase, we measure the Binder cumulant of the C,
order parameter that is defined as 1 — (C3)/(3(C3)?). In
Fig. 3, we see that there are two dips separating phases (i)
and (ii), and (ii) and (iii), respectively. In principle, we
expect a third dip indicating the transition from phases
(iii) to (iv). However, it has been shown in [32] that this dip
is extremely sharp for large system sizes and, thus, not
covered by the resolution of noise strength used here.
Instead, we identify the position of the transition
N = 0.445 by direct visual inspection of the snapshots.
The other transition noise strengths obtained from the dips
in the Binder cumulant, 7., = 0.284 and 5., = 0.33, are
also consistent with the phases identified on the snapshots.
The minimum value of the Binder cumulant at a discon-
tinuous transition depends on the distribution of the order
parameter. For large systems, it depends in leading order
only on the positions of the two peaks of the distribution,
see [33]. For the transition between (ii) and (iii), we can
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FIG. 3. Binder cumulant of the structural order parameter C,

obtained from the same simulations as used in Fig. 2. We can
identify two clear dips indicating the transitions from phases (i) to
(ii) (dashed line) and from phases (ii) to (iii) (dotted line). In the
inset, we show some additional points [29] close to the transition
from phase (i) to (ii). In principle, there should be a third dip
between phases (iii) and (iv) (dash-dotted line). However, this is
not observed here due to its expected sharpness.

estimate those peak positions by the averages of cross sea
and band states, that is, by the red and the green line of
Fig. 2. According to the theory of [33], we obtain a
minimum value of the Binder cumulant that deviates only
about 0.3% from the measured value. For the transition
between (i) and (ii), we directly measure the distribution of
the order parameter, obtaining a double peak distribution.
The minimum value of the Binder cumulant predicted from
those peak positions also agrees with the measured value
within the estimated uncertainty, see, for details, [31]. Thus,
the fact that the dip in the Binder cumulant at 5. is
relatively small does not indicate that there is no real
transition. In contrast, the size of the dip is in accordance
with the theory of first order transitions [33]. We also study
different system parameters and find qualitatively equiv-
alent results, see [31].

Looking at Fig. 1(ii), we might suppose that the cross sea
state is just a superposition of two planar waves as they occur
in phase (iii). To test this hypothesis, we measure the particle
density averaged in the comoving frame [34] of the cross sea
pattern. One example is displayed in Fig. 4(a). We observe
that the density at the crossing points of the pattern is much
larger than the sum of the densities of two fronts. This shows
that the cross sea state represents a stand-alone complex
pattern and not just the superposition of two waves, such as,
e.g., in [27]. Even more evidence for the independence of the
pattern is obtained from the distribution of crossing angles.
For a superposition of waves, all crossing angles would be
allowed. However, we find only one inherently selected
crossing angle, see Supplemental Material [31].

Considering only the high density crossing points of the
pattern, the system looks like a two-dimensional lattice of
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FIG. 4. (a) Average of local particle density p and local
momentum density over 103 time steps after a thermalization
time of T = 2 x 107 within the comoving frame [35] of the cross
sea pattern. The particle density is displayed by the color map.
One sees that a lot of mass accumulates at the crossing points of
the pattern. The densities of the crossing points are approximately
four to five times as large as the density along the single fronts.
The black arrows display the momentum density, where thick
arrows correspond to large momentum. We see that mass is
mainly transported along the high density bands and, on average,
in the opposite directions of the mean velocity of the particles in
the lab frame (red arrow). Parameters are as in Fig. 1, n = 0.29.
(b) Illustration of the mass transport mechanism within the
pattern. See text for explanations.

particle clusters. Such a lattice was found in a Vicsek-like
model with additional repulsive interactions and special
boundary conditions [35]. Here, however, the fronts con-
necting the clusters cannot be neglected because they are
necessary to transmit information between the crossing
points. But it is still reasonable to investigate a lattice order
parameter. Qualitatively, such an order parameter looks
exactly like the structural order parameter C, of Fig. 2 and,
thus, confirms the presence of the cross sea phase, see [31]
for details.

To understand the accumulation of mass at the crossing
points of the pattern, we also investigate the momentum
density within the comoving reference frame [34] of the
pattern. We observe a nonzero particle flow along the band
structures of the pattern, on average, in the direction
opposite to the movement of the pattern in the lab frame,
see Fig. 4(a). This shows that, in the lab frame, the pattern
moves faster than the center of mass. In the example of
Fig. 4(a) the pattern velocity is |7, ;| ~ 0.92 compared to

the center of mass velocity |V, ;| & 0.65. Qualitatively, the
particle flow can be understood by a simple geometric
argument, shown in Fig. 4(b). In the lab frame, the particles
in the band move, on average, perpendicular to the fronts
with velocity Ef.]. However, the whole pattern moves with
velocity o p; in the lab frame. Considering the band
particles in the pattern comoving frame [34], their velocity
is given by ¥y = ¥, — ¥,,;, which points along the front,
see Fig. 4(b). At the crossing points, however, the particle
velocities point, on average, in the same direction as the
pattern velocity [indicated by the red arrow in Fig. 4(b)].
Because of the high local density, there is stronger align-
ment at the crossing points, such that the mean local
velocity can reach the pattern velocity #,, ;. This mechanism
transports mass along the bands towards the crossing
points. In steady state, it is compensated by mass loss
due to not perfectly ordered particles that lose contact to the
crossing points and enter the low density region behind
the bands.

In summary, in this numerical study, we have shown that
the two-dimensional standard Vicsek model forms complex
self-organized cross sea patterns for very large system sizes
and in certain parameter regimes. We measured the density
profile of the pattern and found that it is not just a
superposition of two waves but an independent structure.
We observe an interesting mass transport in the opposite
direction compared to the pattern propagation leading to
particle accumulation at the crossing points of the pattern.
Furthermore, measuring the Binder cumulant of a corre-
lation order parameter, we have shown that the cross sea
pattern represents a fourth phase of the Vicsek model.
There are two discontinuous transitions from the cross sea
phase: for lower noise intensity, the system enters the
Toner-Tu phase, and for higher noise intensity, it enters the
phase of high density waves. Thus, we answer a recently
formulated question [1]. On the other hand, a theoretical
understanding of this novel phase is still missing. Natural
candidates for mathematical descriptions are field or kinetic
theories. Both approaches seem to be challenging, because
a full two-dimensional treatment is likely to be necessary in
contrast to the band phase. The appearance of the cross sea
phase might also be relevant for other active matter models.
However, further studies are required. Another pending
question is whether an analogous phase exists in the three-
dimensional Vicsek model. A remarkable result from the
general view on active matter is that apparently single
species active systems can form complex patterns similar to
those known from reaction-diffusion systems.
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