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Abstract. We consider a Vicsek model of self-propelled particles with bounded
confidence, where each particle interacts only with neighbors that have a similar
direction. Depending on parameters, the system exhibits a continuous or discontinuous
polar phase transition from the isotropic phase to a phase with a preferred direction.
In a recent paper [1] the von Mises distribution was proposed as an ansatz for polar
ordering. In the present system the time evolution of the angular distribution can be
solved in Fourier space. We compare the results of the Fourier analysis with the ones
obtained by using the von Mises distribution ansatz. In the latter case the qualitative
behavior of the system is recovered correctly. However, quantitatively there are serious
deviations. We introduce an extended von Mises distribution ansatz such that a second
term takes care of the next two Fourier modes. With the extended ansatz we find much
better quantitative agreement. As an alternative approach we also use a Gaussian and
a geometric series ansatz in Fourier space. The geometric series ansatz is analytically
handable but fails for very weak noise, the Gaussian ansatz yields better results but it
is not analytically treatable.
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1. Introduction

In recent years, the collective motion of self-propelled particles has been subject to
intensive research [2, 3, 4, 5]. Active particles under consideration could be living
subjects like e.g. birds, fish, bacteria or artificial nano or micro objects such as bimetallic
nanorods, Janus particles or rotating disks. A popular and simple model for interacting
active matter is the Vicsek model (VM) [6, 7, 8] or variants of it. The dynamics of
the VM consists of two steps, streaming and collision. In the streaming period point
particles move uniformly, all at the same speed but along individual directions. The
collision occurs instantaneously after the streaming period. There, each particles adopts
the average direction of all neighboring particles with some random perturbation (noise).

For large noise intensities the direction of each particle is random and the systems
steady state is homogeneous and in polar disorder. If the noise intensity is decreased
particles start to align and move in a preferred direction. The system obtains a polar
order. For large system sizes the transition appears discontinuous and the polar ordered
state is inhomogeneous [9, 10]. There are soliton-like density waves. However, for
small system sizes the polar ordered state remains homogeneous and the transition
appears continuous. In that case the transition can be studied via considering solely the
angular distribution of all particle directions. Even for the homogeneous solutions the
dynamics remains complex and usually further simplifications are achieved by assuming
molecular chaos and neglecting collisions of more than two particles. Even so the
angular distribution has still infinitely many degrees of freedom that evolve in a nonlinear
fashion. A reduction of the complexity of the dynamics to finite dimensions is necessary
for an analytical treatment and therefore a description of the angular distribution by
only a few degrees of freedom is desirable.

In this paper we investigate four methods of complexity reduction. As an example
system for polar ordering we choose the VM with bounded confidence interactions [11].
Such interactions are used in social sciences for the description of opinion dynamics
[12, 13, 14] to mimic the tendency of agents to be influenced only by others that have
a similar opinion. A similar model with selective interactions has also been used to
model the swarming of bacillus subtilis [15]. In the bounded confidence VM, for a given
particle, another nearby particle is seen as a neighbor only if it has a similar direction
that differs by no more than α. For α = π the standard VM is recovered but for
smaller values of α the system behavior is richer. There is a critical value αc below
which the transition appears discontinuous even for homogeneous systems. To compare
the performance of different approaches of complexity reduction we find, as a point of
reference, the stable fixed points of the system investigating the full dynamics of the
first 200 Fourier modes.

Investigating the angular distribution in Fourier space we consider the first l modes
exactly and assume that all higher modes decay like a geometric series, following
[11]. With this ansatz all infinitely many modes can be treated analytically. We find



Von Mises distribution and an infinite series ansatz for self-propelled particles 3

quantitatively good agreement with the full system, except for very weak noise where
the ansatz breaks down.

For small noise a sharply peaked angular distribution is expected. As a result one
finds a Gaussian decay of higher Fourier modes instead of a geometric series. Such an
ansatz was used before to describe the distribution of coupled phase oscillators [16].
With the Gaussian ansatz we find good quantitative agreement with the full system
over the full range of noise intensities. However, we are not able to evaluate the time
evolution equation analytically for all modes such that the series has to be truncated
after finitely many modes.

An alternative approach is to make an ansatz directly for the angular distribution.
The von Mises distribution was proposed to describe polar ordering in a recent paper [1],
it was also used before [17, 18]. It has only a single parameter, the polar order parameter
and it has the largest entropy of all angular distributions with the same order parameter,
see e.g.[19]. In the present system we find that the ansatz yields qualitative agreement
with the original system, however, quantitatively there are serious deviations, even for
the standard VM.

To improve this direct approach we extend the ansatz by adding another term to
the von Mises distribution. The extended von Mises ansatz yields quantitatively much
better agreement. Close to the critical point and for small noise strength there is very
good accordance with the original system. In between there are small deviations.

During the last decade there has been a fair number of coarse-graining approaches
for self-propelled and active Brownian particles in order to derive macroscopic field
equations for active matter. They include the Boltzmann-approach for Vicsek-like
models with binary interactions [20, 21, 22, 23, 24], approaches that are based on the
Fokker-Planck equation [25, 26, 27], Enskog-like approaches based on the evolution
equation of the N-particle probability density (pdf) [28, 29, 30, 31], derivations for self-
propelled rods based on the Smoluchowski equation [32, 33], and Klimontovich’s method
of the microscopic phase-space density for a continuous-time Vicsek-model [18]. With
rare exceptions [34, 35], these attempts rely explicitly or implicitly on the Molecular
chaos approximation – a mean-field factorization of the N-particle pdf. This leads to
an evolution equation of the one-particle pdf which is the starting point of the coarse-
graining procedures. Most of these procedures lead to a hierarchy of moment equations.
Near the transition from disorder to collective motion, these hierarchies can be closed
by neglecting the highest moments and sometimes considering some of the higher modes
as enslaved to lower modes. This limits the validity of the obtained macroscopic
equations to the vicinity of the transition point. Therefore, a valid parametrization
of the pdf or an infinite series ansatz as studied in this paper are expected to be
beneficial for all these different coarse-graining approaches by allowing the derivation of
hydrodynamic equations far inside the ordered phase, away from the transition point.
Although in this paper we restrict ourselves to a homogeneous system, a position-
dependent parameterization of the one-particle pdf is a straightforward generalization.
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This would enable the treatment of inhomogeneous solutions such as the density-waves
which dominate the regular VM in large systems, near the order-disorder transition
[10, 36]. The results of this paper could also help in improving the accuracy and stability
of numerical solutions to kinetic equations [36, 37] where the truncation of the higher
Fourier modes of the pdf could be avoided.

The paper is organized as follows. In Sec. 2 we introduce the model and give the
time evolution equation of the angular distribution assuming homogeneous systems,
molecular chaos and neglecting collisions of more than two particles. In Sec. 3 we derive
explicitly the time evolution equation of all Fourier modes of the angular distribution.
In Sec. 4 we test the performance of the geometric and Gaussian series ansatz in Fourier
space. In Sec. 5 we study the von Mises distribution ansatz and in Sec. 6 an extension
of it. In Sec. 7 we summarize and compare the advantages and disadvantages of the four
tested approaches for the description of polar ordering in homogeneous active systems.
Several technical derivations have been moved to the appendix.

2. Model

We investigate the two-dimensional Vicsek model with bounded confidence interactions
that was introduced and analyzed in [11]. We consider N point particles with positions
xi(t) ∈ R2 that all move at constant speed v0 into directions θi(t).

The dynamics consists of two parts, streaming and collision, that are alternated.
In the streaming period of length τ all particles perform a ballistic motion. Hence the
particle positions change to

xi(t+ τ) = xi(t) + τv0

(
sin(θi)

cos(θi)

)
. (1)

After the streaming period the particles instantaneously change their direction of
motion due to collisions. Let θi denote the precollisional directions. Then the directions
after collision are given by

θ̃i = Φi + ξi, Φi = arctan

[( ∑
j∈{i}

sin θj

)/(∑
j∈{i}

cos θj

)]
, (2)

where ξi are independent random variables that are drawn uniformly from the interval
[−η/2, η/2]. The set of neighbored particles of particle i is denoted by {i}. Here j ∈ {i}
if |xi − xj| ≤ R and |θi − θj|modπ ≤ α. That means each particle interacts with all
particles that are no further away than R and that have directions that differ by no
more than α. This is the bounded confidence interaction that ignores particles with too
different directions.

Note that all particles interact with themselves. That means {i} is never an empty
set since i ∈ {i}. For α = π the standard Vicsek model is recovered.
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Let f(x, θ, t) denote the density of particles that are at time t located at position
x and move into direction θ. We assume molecular chaos that means we make the
assumption that all particles are independent and identically distributed before the
collision

pN(x1, θ1, . . . , xN , θN , t) =
N∏
i=1

p1(xi, θi, t) (3)

and hence

f(x, θ, t) = Np1(x, θ, t), (4)

where pN and p1 denote the N -particle and one-particle probability density function,
respectively. Assume that the collision occurs at time t and denote the density before
the collision by f(x, θ, t) and after the collision by f̃(x, θ̃, t). They are then related by

f̃(x, θ̃, t) =
N∑
k=1

(
N − 1

k − 1

)∫
[0,2π]k

dθ1 . . . θk
1

η

∫ η/2

−η/2
dξ

× δ̂(θ̃ − ξ − Φ1(θ1, . . . , θk))f(x, θ1, t)
(

1− M

N

)N−k k∏
i=2

∫
|x1−x′i|≤R

dx′i
f(x′i, θi, t)

N
, (5)

where M depends on the interaction radius R and on the position x

M(x, t) :=

∫
|x−x′|≤R

dx′
∫ 2π

0

dθf(x, θ, t) (6)

and Φ1(θ1, . . . , θk) is given by Eq. (2) assuming that particles 1 to k are the only
neighbors of particle 1.

Eq. (5) can be understood as follows. Let the first particle be located at position
x and move in direction θ. Then f̃(x, θ̃, t)/N denotes the first particles probability
distribution after the collision. The number of particles that are within interaction
distance of the first particle is denoted by k. Since the first particle is always in
interaction distance with itself, k is at least one. The combinatorial factor

(
N−1
k−1

)
gives

the number of possibilities to choose k − 1 neighbors for the first particle different
from itself out of the N − 1 other particles. The factor

(
1 − M

N

)N−k in the second line
gives the probability that the particles k + 1, . . . , N are not within interaction distance
of the first particle. The factor

∏k
i=2

∫
|x1−x′i|≤R

dx′i
f(x′i,θi,t)

N
is the probability that the

particles 2, . . . , k are within interaction distance of the first particle times their angular
distribution, given that they are within the interaction distance. The delta function
δ̂(x) :=

∑∞
l=−∞ δ(x+2lπ) in the second line incorporates the collision rule. The integral

over ξ gives the expectation value of the noise term and the integrals over θ1, . . . , θk give
the expectation with respect to the precollisional orientation. The orientations of the
particles outside the interaction region are irrelevant. We see that Eq. (5) is properly
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normalized when integrating over θ̃. Then the delta-function on the right hand side
disappears and all integrals can be performed yielding the identity ρ(x, t) = ρ(x, t).

We consider only homogeneous (in x) solutions

f(x, θ, t) = f(θ, t) (7)

that are normalized such that∫ 2π

0

dθf(θ, t) =

∫ 2π

0

dθf(x, θ, t) = ρ(x) = ρ0. (8)

Hence M(x, t) is a constant

M(x, t) = πR2ρ0. (9)

and it follows from Eq. (5) that

f(θ, t+ τ) = f̃(θ̃, t) =
N∑
k=1

(
N − 1

k − 1

)∫
[0,2π]k

dθ1 . . . θk
1

η

∫ η/2

−η/2
dξ

× δ̂(θ − ξ − Φ1(θ1, . . . , θk))f(θ1, t)
(

1− M

N

)N−k(M/ρ0

N

)k−1
k∏
i=2

f(θi, t). (10)

In the first Equation we used that f(θ) is not affected by streaming and in Eq. (5) we
performed the integrals∫

|x1−x′i|≤R
f(x′i, θi, t)dx

′
i = 2πR2f(θi, t) =

M

ρ0

f(θi, t). (11)

We consider low densities M � 1 such that three particle interactions are unlikely
and we can abort the series in Eq. (10) after the second term. However the truncation of
the series introduces a small error that leads to a violation of conservation of the particle
density. This has to be corrected by normalizing f(θ, t) to ρ0, see also supplemental
material of Ref. [36]. Performing the thermodynamic limit N →∞ we obtain

f(θ, t+ τ) =
1

1 +M

∫ 2π

0

dθ1
1

η

∫ η/2

−η/2
dξδ̂(θ − ξ − θ1)f(θ1, t)

+
M/ρ0

1 +M

∫ 2π

0

dθ1

∫ 2π

0

dθ2
1

η

∫ η/2

−η/2
dξδ̂(θ − ξ − Φ1(θ1, θ2))f(θ1, t)f(θ2, t). (12)

It is reasonable to consider the angular probability distribution of a single particle

p(θ, t) =
1

ρ0

f(θ, t) (13)

that is normalized to one.
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The bounded confidence interaction rule with parameter 0 ≤ α ≤ π yields for two
particles

Φ1(θ1, θ2) =


θ1+θ2

2
if |θ1 − θ2| ≤ α,

θ1+θ2
2

+ π if 0 < |θ1 − θ2| − 2π ≤ α,

θ1 else.

(14)

Inserting this expression and Eq. (13) into the time evolution equation (12), substituting
θ2 by θ1 + θ̂ and integrating over θ1 one obtains

p(θ, t+ τ) =
1

1 +M

1

η

∫ η/2

−η/2
dξp(θ − ξ, t)

+
M

1 +M

{∫ α

−α
dθ̂

1

η

∫ η/2

−η/2
dξp(θ − ξ − θ̂

2
, t)p(θ − ξ +

θ̂

2
, t)

+

(∫ −α
−π

dθ̂ +

∫ π

α

dθ̂

)
1

η

∫ η/2

−η/2
dξp(θ − ξ, t)p(θ − ξ + θ̂, t)

}
. (15)

From this, substituting θ − ξ, we can calculate∫ 2π

0

dθ cos(kθ)p(θ, t+ τ) =
2

kη
sin(kη/2)

1

M + 1
(16)

×
{∫ 2π

0

dθ cos(kθ)p(θ) +M
[ ∫ 2π

0

dθ cos(kθ)

∫ α

−α
dθ̂p(θ − θ̂

2
, t)p(θ +

θ̂

2
, t)

+

∫ 2π

0

dθ cos(kθ)

∫
[−π,−α]∪[α,π]

dθ̂p(θ, t)p(θ + θ̂, t)
]}
.

3. Fourier analysis

To further investigate the time evolution Eq. (15) we study the Fourier modes at time t

p(θ, t) =
∞∑
k=0

gk(t) cos(kθ). (17)

The first mode g1 is directly related to the order parameter Ψ defined by

Ψ := 〈cos(θ)〉 =

∫ 2π

0

dθ cos(θ)p(θ) = πg1. (18)

If Ψ = 1 all particles move in the same direction, there is perfect order. If on the other
hand gk = 0 for all k ≥ 1 there is no order at all and Ψ = 0. The time evolution Eq. (15)
yields for k > 0

gk(t+ τ) =
λk

1 +M

[
1

2
gk + 2πM

∞∑
p=0

∞∑
q=0

Bkpq(α)gpgq

]
, (19)
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where all modes on the right hand side are considered at time t and

λk =
4

kη
sin(kη/2). (20)

Eqs. (19) and (20) were given in [11], where only some of the coupling coefficients Bkpq(α)

have been calculated. However we can calculate all Bkpq(α) explicitly, cf. Appendix A,
resulting in the time evolution equation

gk(t+ τ) =
λk

1 +M

{
gk

[1

2
+ g0M

{
π − α +

3

k
sin(kα/2)− 1

2k
sin(kα)

}]
+
M

2
α
∞∑
q=1

gq

[
g|k−q|

{
sinc[(k/2− q)α/π]− sinc(qα/π)

}
+ gk+q

{
sinc[(k/2 + q)α/π]− sinc(qα/π)

}]}
. (21)

Due to normalization we have at all times

g0 =
1

2π
. (22)

We immediately see that gk = 0 for k = 1, 2, . . . is invariant under the time evolution
(21). This solution corresponds to a constant angular distribution, that means a
completely disordered state. There is a critical noise strength when the disordered
solution looses stability and solutions with a nonzero order parameter appear. The
stability of the disordered state and the order parameter close to the critical point can
be analyzed investigating just the first three modes. This was done in [11]. As we
compare the leading behavior of the order parameter for several approximations in the
following sections we repeat the stability analysis and give explicit expression for the
order parameter close to the critical point in Appendix B.

4. Series ansatz

For practical computations we can take into account only finitely many modes. This
problem can be overcome by taking only a few modes into account exactly and
incorporating higher modes by a series ansatz.

4.1. Geometric series

In [11] the following ansatz was proposed. We take the first l modes into account exactly
and assume that all higher modes behave as a geometric sequence with parameter

µ = gl/gl−1. (23)
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That means we assume that

gs = gl−1µ
s−l+1 (24)

for s ≥ l − 1.

This ansatz is exact in two limiting cases. At the critical point ηc, where all modes
starting from g1 are zero, µ = 0. For η = 0 all modes are gi = 1

2π
and thus µ = 1.

The big advantage of this ansatz is that the set of Equations (21) can be closed
analytically. One obtains after some lengthy calculations, cf. Appendix C, for even k

gk(t+ τ) =
λk

1 +M

{
gk

[1

2
+ g0M

{
π − α +

3

k
sin(kα/2)− 1

2k
sin(kα)

}]
+
M

2
α
l−2+k∑
q=1

[
gqg|k−q|

{
sinc[(k/2− q)α/π]− sinc(qα/π)

}]
+
M

2
α

l−2∑
q=1

[
gqgk+q

{
sinc[(k/2 + q)α/π]− sinc(qα/π)

}]
+Mg2

l−1(µ2)1−l
[
Sl−1+k/2(µ2, α)− µk

2
Sl−1(µ2, α)− µ−k

2
Sl−1+k(µ

2, α)
]}

(25)

and for odd k

gk(t+ τ) =
λk

1 +M

{
gk

[1

2
+ g0M

{
π − α +

3

k
sin(kα/2)− 1

2k
sin(kα)

}]
(26)

+
M

2
α
l−2+k∑
q=1

[
gqg|k−q|

{
sinc[(k/2− q)α/π]− sinc(qα/π)

}]
+
M

2
α

l−2∑
q=1

[
gqgk+q

{
sinc[(k/2 + q)α/π]− sinc(qα/π)

}]
+Mg2

l−1(µ2)1−l
[
2S2l−2+k(µ,

α

2
)− Sl+ k−1

2
(µ2, α)− µk

2
Sl−1(µ2, α)− µ−k

2
Sl−1+k(µ

2, α)
]}
,

where the functions Si are defined in Appendix C and calculated in Appendix D. Thus
we obtained a closed time evolution equation for the first l modes. In [11] the series was
truncated after 500 modes and evaluated numerically. With Eqs. (25) and (26) we have
an analytical treatment of all infinitely many Fourier modes.

In Fig. 1 we compare stable fixed points of the order parameter obtained from the
full Fourier analysis with those obtained using the geometric series ansatz. For α = π

there is very good agreement already for l = 3. However, for α = αc and α = 0.35π < αc
the geometric approximation breaks down for very small noise. In Fig. 1c we see irregular
data for l = 3 and small noise, as a result of a numerical instability. The reason is that
unphysical distributions are produced. It must always hold −1 ≤ 〈cos(kθ)〉 ≤ 1 and
hence − 1

π
≤ gk ≤ 1

π
. However, this condition is violated and we tried to correct this by
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artificially renormalizing all modes in each step. Apparently this produces numerical
instabilities for l. It is not surprising that three modes are not enough to describe
the system correctly over the full parameter range. They are just essential to cover
the transition properly. By explicitly incorporating the first 8 modes the results are
improved but the ansatz is still inaccurate for very small noise. Therefore in the next
subsection we investigate the mode structure for small noise to improve the ansatz.

4.2. Gaussian decay

In Fig. 3 we plotted the logarithm of the k-th mode vs. k for η = 0.05ηc. We find that
there is no linear relation but instead the first 10− 30 modes are of the form

gk = exp(a− γk2). (27)

The black solid line in Fig. 3 is given by Eq. (27), where a and γ are determined from
g2 and g3. Depending on α it describes the data well for the 10 to 30 modes.

The Gaussian decay (27) can be understood as follows. For small noise intensities
we expect a narrow distribution of the angular variable. If the angular distribution is
approximated by 1√

επ
exp(−θ2/ε) for a small parameter ε, the Fourier modes can be

asymptotically calculated. One finds that in leading order

gk+1

gk
− 1 =

(2k + 1)

2
ε. (28)

We obtain the same result from the ansatz (27) if γ = ε/2 is small. Thus the ansatz is
reasonable at least for small noise.

It is important that the ansatz is a good approximation only where higher modes
give an essential contribution to the evolution of the first few modes. In particular this
is the case close to η = 0 where all modes become 1/π.

As in the previous subsection we take into account the first l modes exactly and
determine in each step the parameters a and γ from Eq. (27) for k = l and k = l − 1.
Then higher modes are determined according to Eq. (27). Unfortunately we have not
been able to close the time evolution equation analytically as for the geometric series
ansatz. Therefore we have to truncate the sequence of Fourier modes after the n-th
mode. The computational complexity of updating these n modes is reduced to order n
instead of order n2 for the full Fourier analysis.

In Fig. 2 we compare the fixed points obtained using the series ansatz with those
found by the full Fourier analysis. Already for l = 3 the series ansatz gives relatively
good results, for l = 8 there is very good agreement with the full Fourier analysis. In
both cases the Fourier series was truncated after the first 200 modes.
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Figure 1. Full Fourier analysis vs. geometric series ansatz. Nonnegative stable fixed
points of the order parameter Ψ as a function of noise strength for (a) α = π, (b)
α = αc ≈ 0.4429096π and (c) α = 0.35π. The blue line indicates the fixed points
obtained from the time evolution of 200 Fourier modes according to Eq. (21), the blue
dashed line indicates the jump. The symbols show data obtained by taking the first
three (red filled circles) or eight (green crosses) modes into account exactly and using
a series ansatz for higher modes. For three exact modes and α = 0.35π (c) there are
irregular data for very small noise strengths due to a numerical instability discussed
in the last paragraph of subsection 4.1. Fixed points have been obtained by iterating
105 time steps for each point. In all cases M = 0.1.
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Figure 2. Full Fourier analysis vs. Gaussian decay. Nonnegative stable fixed
points of the order parameter Ψ as a function of noise strength for (a) α = π, (b)
α = αc ≈ 0.4429096π and (c) α = 0.35π. The solid and dotted blue lines are as in
Fig. 1. The symbols show data obtained by taking the first three (red filled circles) or
eight (green crosses) modes into account exactly and using a Gaussian decay ansatz
for higher modes. Fixed points have been obtained by iterating 105 time steps for each
point. In all cases M = 0.1.
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Figure 3. Logarithm of the first 30 Fourier modes at η = 0.05ηc for (a) α = π, (b)
α = αc and (c) α = 0.35π. The red circles are data from the full Fourier analysis of
the first 200 modes, the dashed line is just the straight line through g2 and g3 and the
solid line is the Gaussian ansatz (27) with parameters obtained from g2 and g3.

5. von Mises distribution ansatz

In the recent paper [1] the von Mises distribution was proposed as an ansatz for polar
ordering. We test this approach in the present system and therefore assume in the
following that the distribution function f(θ, t) is a von Mises distribution at all times
given by the single parameter Ψ(t). The von Mises distribution is given by

pΨ(θ) =
1

2πI0[κ(Ψ)]
exp[κ(Ψ) cos(θ)], (29)

where I0 is the modified Bessel-function of the first kind and κ(Ψ) is chosen in such a
way that

Ψ =

∫ 2π

0

dθ cos(θ)pΨ(θ) =
I1(κ(Ψ))

I0(κ(Ψ))
. (30)

Since the right hand side is a strictly monotone function of κ that ranges from −1 to
+1 the function κ(Ψ) is invertible and well-defined by Eq. (30).

If the distribution is chosen according to the von Mises ansatz (29) and it evolves
according to the time evolution Eq. (15) it will not be exactly of von Mises form at later
times. However, the hope is that the deviations are not too large and we can assume
the following time evolution equation for Ψ(t)

Ψ(t+ τ) =

∫ 2π

0

dθ cos(θ)T [pΨ(t)(θ)] =: F [Ψ(t)], (31)

where T [·] denotes the time evolution of p(θ) according to Eq. (15).
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Inserting the ansatz Eq. (29) into Eq. (16) for k = 1 we obtain

F (Ψ) =
2

η
sin
(η

2

) 1

1 +M

{
Ψ +

M

4π2I2
0 [κ(Ψ)]

×
[ ∫ 2π

0

dθ

∫ α

−α
dθ̂ cos(θ) exp

{
κ(Ψ)

[
cos(θ − θ̂/2) + cos(θ + θ̂/2)

]}
+

∫ 2π

0

dθ

∫
[−π,−α]∪[α,π]

dθ̂ cos(θ) exp
{
κ(Ψ)

[
cos(θ) + cos(θ + θ̂)

]}]}
. (32)

The integrals over θ can be performed∫ 2π

0

dθ cos(θ) exp
{
κ(Ψ)

[
cos(θ − θ̂/2) + cos(θ + θ̂/2)

]}
=

∫ 2π

0

dθ cos(θ) exp
[
2κ(Ψ) cos(θ) cos(θ̂/2)

]
= 2πI1[2κ(Ψ) cos(θ̂/2)], (33)

∫ 2π

0

dθ cos(θ) exp
{
κ(Ψ)

[
cos(θ) + cos(θ + θ̂)

]}
= cos(θ̂/2)

∫ 2π

0

dθ̃ cos(θ̃) exp
{
κ(Ψ)

[
cos(θ̃ − θ̂/2) + cos(θ̃ + θ̂/2)

]}
= 2π cos(θ̂/2)I1[2κ(Ψ) cos(θ̂/2)], (34)

where we used trigonometric identities and, in the second integral, the substitution
θ̃ = θ + θ̂/2. Inserting the integrals (33) and (34) into Eq. (32) we obtain

F (Ψ) =
1

1 +M

2

η
sin(η/2) (35)

×
{

Ψ +
M

π

[ ∫ α

0

dθ̂
I1[2κ(Ψ) cos(θ̂/2)]

I0[κ(Ψ)]2
+

∫ π

α

dθ̂ cos(θ̂/2)
I1[2κ(Ψ) cos(θ̂/2)]

I0[κ(Ψ)]2

]}
.

In Fig. 6 we compare the fixed points of the time evolution map (35) to those of the
Fourier analysis of Sec. 3. For α = π we find relatively good agreement, however, we
discuss in the following subsection that even there, there are quantitative differences even
close to the critical point, cf. Fig. 4, Tab. 1. At the tricritical point there is qualitative
agreement with already relatively large quantitative differences and for α < αc there are
even qualitative differences as the position of the jump in the order parameter is not
predicted correctly with the von Mises ansatz and there are serious deviations in the
jump height of at least 59%, cf. Fig. 5.

5.1. Small order parameter

We observe that Ψ = 0 is always a fixed point of (35). It describes the state of
total disorder and we are investigating the time evolution map (35) close to this state.



Von Mises distribution and an infinite series ansatz for self-propelled particles 14

Differentiating Eq. (30) several times with respect to Ψ, at Ψ = 0, we obtain the leading
behavior of κ(Ψ) for small Ψ

κ(Ψ) = 2Ψ + Ψ3 +
5

6
Ψ5 +O(Ψ7). (36)

Inserting this expression into Eq. (35) we can expand the time evolution map for small
Ψ yielding

F (Ψ) =
1

1 +M

2

η
sin(η/2)

{
1 +

M

2π
c101Ψ +

M

2π
c112Ψ3 (37)

+
M

2π

[
− 1

3
sin(α) +

4

9
sin(3α/2)− 1

4
sin(2α) +

2

15
sin(5α/2)− 1

18
sin(3α)

]
Ψ5+O(Ψ7)

}
,

where the coefficients c101 and c112 are given by Eqs. (B.4) and (B.5). Since F (Ψ) is an
odd function there appear no even powers.

The disordered solution Ψ = 0 changes stability when F ′(0) = 1. Hence we find
the critical noise strength ηc according to Eq. (37) by

1 =
2

ηc
sin(ηc/2)

1

1 +M

{
1 +M

[ 4

π
sin(α/2) + 1− α

π
− 1

π
sin(α)

]}
. (38)

The critical noise strength (38) predicted by the von Mises ansatz coincides with the
one predicted by the Fourier analysis, cf. [11].

Since F ′(0) decreases monotonously as η increases we find that

F ′(0) ≷ 1 if η ≶ ηc. (39)

Hence the disordered solution Ψ = 0 is stable for η > ηc and it is unstable for η < ηc.

The transition at ηc is continuous if F ′′′(0)|η=ηc > 0 and discontinuous if
F ′′′(0)|η=ηc < 0. The sign of F ′′′(0) equals the sign of sin(3α/2) − 3

4
sin(α) − 3

8
sin(2α).

It is positive if α < αc and it is negative if α > αc. At α = αc ≈ 0.4429096π F ′′′(0) = 0.

Thus the tricritical point is given by η = ηc and α = αc. The von Mises ansatz leads
to the same tricritical point as the full Fourier analysis, cf. [11]. This means that F ′(0)

and F ′′′(0) of both descriptions become zero for the same parameters. However, this
does not imply that F ′(0) and F ′′′(0) of both descriptions coincide for all parameters.

We calculate the leading behavior of the order parameter close to the critical point
for α > αc and close to the tricritical point for α = αc. Above the tricritical point it
suffices to take into account terms up to Ψ3 in Eq. (37). Hence we find the fixed points
Ψ∗ of the time evolution map as solutions of

d1Ψ∗ =
M

2π
c112Ψ∗3, (40)
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Figure 4. Deviations between the order parameter Ψ = D(ηc − η)1/2 close to ηc and
the prediction by the von Mises ansatz by Ψ = E(η − ηc)1/2 as a function of α for
M = 0.1 (solid red line) and M = 0.01 (dashed blue line) and a numerical test of the
extended von Mises ansatz (black crosses). For the von Mises ansatz the deviations
become huge close to α ≈ αc and also for the standard VM at α = π they are larger
than 3%. The extended von Mises ansatz predicts exactly the same value of D as the
full system analysis. With the extended ansatz we determined the order parameter
at η = ηc − 0.01ηc, ηc − 0.02ηc, ηc − 0.04ηc, ηc − 0.08ηc numerically and used a single
parameter fit to obtain the coefficient D for M = 0.1. The deviations are about 0.5%.
The solid black line at zero is just a guide to the eye.

where d1 is given by Eq. (B.13) and c112 by Eq. (B.5). The nonzero solutions close to
the critical point are

Ψ∗ =± E√ηc − η (41)

with

E =

√
−π(1 +M)[sin(ηc/2)− ηc

2
cos(ηc/2)]

Mc112 sin2(ηc/2)
(42)

The coefficient E predicted by the von Mises ansatz differs from the corresponding
coefficient D that is obtained by Fourier analysis, cf. Eq. (B.17). In Fig. 4 we show the
deviations as a function of α. Close to αc they become larger than 50% but also for the
standard Vicsek model, at α = π, there are deviations of more than three percent. At
the tricritical point there is no term proportional to Ψ3 in Eq. (37) and the next order
term has to be taken into consideration resulting in

Ψ∗ =± E ′(ηc − η)1/4 (43)

with

E ′ =

{
− π1 +M

M

sin(ηc/2)− ηc
2

cos(ηc/2)

sin2(ηc/2)
(44)/[

− 1

3
sin(α) +

4

9
sin(3α/2)− 1

4
sin(2α) +

2

15
sin(5α/2)− 1

18
sin(3α)

]}1/4

.
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Figure 5. Jump height of the discontinuous transition for α < αc. Data are obtained
from the von Mises ansatz (blue squares), the extended von Mises ansatz (red circles)
and by considering the first 200 Fourier modes exactly (black crosses). The jump
height predicted by the von Mises ansatz deviates by more than 59% from the full
Fourier analysis. For the extended von Mises ansatz the deviations are at most 7%.
The accuracy of the determined jump height depends highly on the resolution of η for
data like in Fig. 1c. We chose a resolution of 0.001ηc. Probably the accuracy could be
improved using a finer resolution in combination with the iteration of more time steps.

M D′ E ′ |D′−E′|
D′

[%]

0.1 1.59389234612 3.00658504094 88.6
0.01 2.06282992919 3.96175328257 92.1

Table 1. Leading behavior of the order parameter close to the tricritical point ηc for
α = αc, Ψ = D′(ηc − η)1/4, cf. Eq. (B.19), and approximation by von Mises ansatz
Ψ = E′(ηc − η)1/4, cf. Eq. (44). The coefficient predicted by the von Mises ansatz
deviates about 90% from the correct value.

In Table 1 we compare the coefficient E ′ predicted by the von Mises ansatz with the
coefficient D′ obtained by Fourier analysis, cf. Eq. (B.19). There are huge deviations of
about 90%. Thus the von Mises ansatz is not able to appropriately determine the order
parameter close to the tricritical point.

5.2. Large order parameter

For very small noise strength we are deep in the ordered phase and it becomes difficult
to accurately evaluate Eq. (35) numerically. However, for small noise and close to the
stable fixed points we can approximate Eq. (35) analytically. One of the stable fixed
points of the order parameter Ψ∗+ → 1 as η → 0, hence in this limit 1−Ψ� 1. We can
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Figure 6. Fourier analysis vs. von Mises ansatz. Nonnegative fixed points of the order
parameter Ψ as a function of noise strength for (a) α = π, (b) α = αc ≈ 0.4429096π

and (c) α = 0.35π. The solid and dotted blue lines are as in Fig. 1. The red filled
circles and green empty squares show the numerically obtained stable and unstable
fixed points obtained from the von-Mises-distribution ansatz (29), respectively. The
dashed black line shows the stable fixed point of obtained from the von Mises ansatz
analytically for large order parameters, cf. Eq. (46). The stable fixed points of the
Fourier mode analysis have been obtained by iterating 105 time steps for each point.
Stable and unstable fixed points of the von Mises distribution have been obtained using
root finding algorithms for the time evolution map (35). In all cases M = 0.1.

expand the time evolution map (37) for 1−Ψ� 1 and obtain

F (Ψ) ≈ 2

η
sin
(η

2

) 1

1+M

[
Ψ+

M

2
(1+Ψ)

]
+O[(1−Ψ)2]. (45)

This leads to the fixed point

Ψ∗+ =
1

η
sin
(η

2

) M

1 +M

/[
1− 2

η
sin(η/2)

1 +M/2

1 +M

]
. (46)

Due to symmetry there is another stable fixed point at Ψ∗− = −Ψ∗+.

6. Extended von Mises distribution ansatz

To further improve upon the results of the previous section we extend the von Mises-
distribution ansatz by adding another term

p(θ, t) =
1

Z

{
exp

[
A cos(θ)

]
+B exp

[
C cos(2θ)

]}
, (47)

Z =

∫ 2π

0

dθ

{
exp

[
A cos(θ)

]
+B exp

[
C cos(2θ)

]}
= 2π

[
I0(A) +BI0(C)

]
. (48)

The first term is just the von Mises distribution. The second term allows corrections
that take into account the next two modes. As in Sec. 5 we assume that the distribution
function has the functional form (47) at all times. Hence the parameters A, B, C and
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the normalization factor Z depend on time. The time evolution of these quantities is
obtained in two steps.

In the first step we calculate 〈cos(θ)〉, 〈cos(2θ)〉 and 〈cos(3θ)〉 at time t+τ according
to Eq. (16) assuming that f(θ, t) is given by Eq. (47). The integrals in Eq. (16) have
to be solved numerically. Thus two-dimensional numerical integration is required in the
first step.

In the second step one finds the time evolved parameters A(t + τ), B(t + τ) and
C(t+ τ) that are compatible with 〈cos(θ)〉(t+ τ), 〈cos(2θ)〉(t+ τ) and 〈cos(3θ)〉(t+ τ)

according to the ansatz Eq. (47) which leads to

Ψ = 〈cos(θ)〉 =
2π

Z
I1(A), (49)

〈cos(2θ)〉 =
2π

Z

[
I2(A) +BI1(C)

]
, (50)

〈cos(3θ)〉 =
2π

Z
I3(A). (51)

The parameter A can be obtained easily as from Eqs.(49) and (51) follows

〈cos(3θ)〉
〈cos(θ)〉 =

I3(A)

I1(A)
. (52)

This equation has a unique solution as the right side is strictly monotone in A and ranges
from −∞ to ∞. Thus A(t+ τ) can be calculated numerically with high efficiency.

From Eqs. (49) and (51) we find that

I1(A)〈cos(2θ)〉 − I2(A)〈cos(θ)〉
I1(A)− I0(A)〈cos(θ)〉 =

I1(C)

I0(C)
. (53)

We can numerically solve this equation for C as the right hand side is again strictly
monotone in C.

Having found A and C one obtains B for example from Eqs. (48) and (49) as

B =
I1(A)/〈cos(θ)〉 − I0(A)

I0(C)
. (54)

The computationally most expensive step in time evolving the distribution (47) is the
two dimensional integral in Eq.(16) but it is still relatively fast.

In Fig. 7 we compare stable fixed points obtained with the extended von Mises
ansatz (47) with the one resulting from the full Fourier analysis considering the first
200 modes. For the standard Vicsek model, α = π, there is perfect agreement. In the
other two considered cases, α = αc and α = 0.35π < αc there are still slight deviations
for intermediate noise strengths, however, the results are much better than for the pure
von Mises ansatz, cf. Fig. 6. Also the jump height of the discontinuous transition is
predicted much better with deviations of at most 7%, cf. Fig. 5.
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Figure 7. Fourier analysis vs. extended von Mises ansatz. Nonnegative stable fixed
points of the order parameter Ψ as a function of noise strength for (a) α = π, (b)
α = αc ≈ 0.4429096π and (c) α = 0.35π. The solid and dotted blue lines are as in
Fig. 1. The red filled circles show the fixed points obtained from the time evolution of
the extended von Mises-distribution (47). Fixed points have been obtained by iterating
105 time steps for each point. In all cases M = 0.1.

To analyze the leading behavior of the order parameter close to the critical point
we make the ansatz that the first three modes behave as

Ψ = 〈cos(θ)〉 =: ε, 〈cos(2θ)〉 ∼ ε2, 〈cos(3θ)〉 ∼ ε3, (55)

where ε is small. This leads according to Eqs. (52) and (53) in leading order to

A ∼ ε, B ∼ ε2. (56)

One finds that all higher modes are of order ε4 or of higher order. Thus taking into
account only terms up to ε3 just the first three modes need to be considered. It is
possible to expand A,B and C for small ε and evaluate the time evolution equation
(16) for the first three modes taking into account only terms up to ε3. One arrives
exactly at Eqs. (B.1-B.3), where

〈cos(kθ)〉 = πgk. (57)

Thus the extended von Mises ansatz is able to predict the leading behavior of the order
parameter close to the disordered phase correctly. In Fig. 4 we compare the predicted
leading behavior with numerical results. The deviations are about 0.5% and seem to not
depend on parameters. The reason for these deviations can be that the numerical data
have been obtained not close enough to the critical point. Also numerical inaccuracies
in the numerical integration of Eq. (16) can play a role.

7. Discussion and Conclusions

We investigated polar ordering in the two-dimensional Vicsek model with bounded
confidence interactions where each particle interacts only with particles whose direction
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differs by no more than α. For α = π the standard Vicsek model is recovered. We
investigated only homogeneous systems. In this case there is a critical value αc such
that for α > αc, assuming all states are homogeneous, there is a continuous state
transition at noise strength ηc such that the system is disordered for η > ηc and there
is polar order for η < ηc. For α < αc the transition becomes discontinuous.

Assuming molecular chaos and low particle densities we derived an explicit algebraic
time evolution equation of the angular distribution in Fourier space, Eq. (21). In
principle this equation was given already in [11], however several coupling coefficients
have not been calculated explicitly, which we did in this paper. The computational
complexity of time evolving the first n Fourier modes is of order n2. To simplify the
problem from infinite dimensions we tested several approaches.

In an ansatz proposed in [11] only the first l modes are considered exactly and
all higher modes are assumed to decay like a geometric series. This approach has
the advantage that all infinitely many modes can be considered analytically and we
achieve a closed time evolution equation for the first l modes, Eqs. (25) and (26). The
description is very accurate at the critical point and close to it. It is good when the
order parameter is not to large. For the standard Vicsek model the description is good
for all noise strengths. However, for small α and small noise strength there are serious
deviations from the real behavior.

For small noise the angular distribution is a sharp peak and as a consequence we
find that the Fourier modes do not decay like a geometric sequence but like a Gaussian.
Using a Gaussian decay ansatz for higher Fourier modes there is very good agreement
with the real system over the full parameter range. Unfortunately, in this case we have
not been able to close the time evolution equation including all (infinitely many) modes,
such that the Fourier series has to be truncated after finitely many modes like in the full
analysis. However, the computational complexity to evolve the first n modes is reduced
to the order n.

The so far mentioned approaches used a series ansatz in Fourier space. We also tried
a more direct recently proposed [1] ansatz in real space. We assume that the angular
distribution is of von Mises type at all times. The big advantage is that the von Mises
distribution has only a single parameter. Hence the time evolution of the distribution
is reduced to a one-dimensional map that evolves the order parameter. This ansatz is
able to qualitatively reproduce the correct system behavior and also the correct critical
point.

However, the von Mises ansatz is too simple to give a quantitatively correct
description of the system. There are serious deviations even for the standard Vicsek
model. The order parameter close to the critical point deviates about 3% for α = π

and more than 50% close to the tricritical point αc. The position and the jump height
of the discontinuous transition is not predicted properly. The ansatz is only able to
handle the first Fourier mode correctly, however once the first mode is chosen, also all
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higher modes are determined and there is no more freedom. The correct handling of the
first mode is enough to predict the critical point but to also achieve the correct order
parameter at least one more degree of freedom is necessary to control the second mode.
At the tricritical point also the third mode is necessary.

After submitting this paper we became aware of Ref. [38], where the angular
distribution was approximated by a wrapped Gaussian in real space. The distribution
has, like the von Mises distribution, the advantage that it is described solely by a single
parameter. The description seems to be good for very small noise intensities, where the
distribution becomes sharp. However, close to the order-disorder transition point, the
wrapped Gaussian ansatz is much worse than the von Mises ansatz as it does not even
recover the correct (mean-field) critical exponent 1/2 but instead predicts the exponent
1/4, cf. the inset of Fig. 3 of Ref. [38]. The reason is that kinetic theory (B.1,B.2)
predicts that near the transition point the first two moments scale in such a way that
the ratio Γ = 〈cos(2θ)〉/〈cos(θ)〉2 approaches a non-zero constant for η → ηC . This is a
property of the collision integral, Eq. (12), and is reproduced by the von Mises ansatz.
However, for a wrapped Gaussian this ratio would go to zero instead. Note, that this
problem was circumvented in section 4.2 by not approximating the lowest three or more
Fourier modes by a Gaussian ansatz.

To combine the advantage of a simple angular distribution ansatz with the necessity
of the correct handling of at least the first three Fourier modes we extended the von Mises
ansatz by adding another term. In that way the order parameter close to the critical
point is predicted correctly. For the standard Vicsek model there is almost perfect
agreement of the order parameter over the full parameter range. Also for smaller values
of α there is relatively good agreement although there are slight deviations. For not too
small α, the jump height of the discontinuous transitions is predicted correctly.

The parametrization of the probability density and the infinite series approaches
presented in this paper could be beneficial for a number of coarse-graining methods for
active matter such as [20, 24, 25, 27, 28]. In particular, similar to Ref. [38] they could
help to obtain improved hydrodynamic descriptions that are not only valid close to the
transition between disordered and collective motion but also at lower noise, deep in the
ordered phase.

Appendix A. Time evolution in Fourier space

The coupling coefficients are given by

Bkpq(α) =
1

(2π)2

∫ 2π

0

∫ 2π

0

dθ1dθ2 cos(kΦ1) cos(pθ1) cos(qθ2) = B
(1)
kpq +B

(2)
kpq, (A.1)
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where

B
(1)
kpq =

1

(2π)2

∫ 2π

0

dθ1 cos(kθ1) cos(pθ1)

∫ θ1−α+2π

θ1+α

dθ2 cos(qθ2)

=


− 1

4πq
sin(qα)(akpq + bkpq) for q 6= 0

1
2

(
1− α

π

)
δ0(k − p) for q = 0, k 6= 0

1− α
π
for k = p = q = 0,

(A.2)

B
(2)
kpq =

1

(2π)2

∫ 2π

0

dθ1 cos(pθ1)

∫ θ1+α

θ1−α
dθ2 cos[kΦ1(θ1, θ2)] cos(qθ2) (A.3)

=
α

4π

[
sinc

(p+ q

2π
α
)
akpq + sinc

(p− q
2π

α
)
bkpq

]
,

where

sinc(x) =

{
sin(xπ)
xπ

for x 6= 0

1 for x = 0
(A.4)

and

akpq = δ0(k + p− q) + δ0(k − p+ q), (A.5)

bkpq = δ0(k + p+ q) + δ0(k − p− q), (A.6)

where

δ0(x) =

{
1 for x = 0

0 else.
(A.7)

Inserting the coupling coefficients (A.3) into the time evolution Eq. (19) we obtain for
k > 0 the time evolution Eq. (21).

Appendix B. Leading behavior of the order parameter

Taking into account only the first three modes we find the fixed point according to
Eq. (21) given by the system of equations

g1 =
2

η
sin
(η

2

) 1

1 +M
(g1 +Mg0g1c101 +Mg1g2c112 +Mg2g3c123), (B.1)

g2 =
1

η
sin(η)

1

1 +M
(g2 +Mg0g2c202 +Mg2

1c211 +Mg1g3c213), (B.2)

g3 =
2

3η
sin
(3η

2

) 1

1 +M
(g3 +Mg0g3c303 +Mg1g2c312), (B.3)
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where the coupling coefficients cijk depend on α and are given by

c101 =2π − 2α + 8 sin
(α

2

)
− 2 sin(α), (B.4)

c112 =
4

3
sin
(3α

2

)
− 1

2
sin(2α)− sin(α), (B.5)

c123 =
4

5
sin
(5α

2

)
− 1

3
sin(3α)− 1

2
sin(2α), (B.6)

c202 =2π − 2α + 4 sin(α)− sin(2α), (B.7)

c211 =α− sin(α), (B.8)

c213 = sin(2α)− 1

3
sin(3α)− sin(α), (B.9)

c303 =2π − 2α +
8

3
sin
(3α

2

)
− 2

3
sin(3α), (B.10)

c312 =4 sin(
α

2
)− sin(α)− 1

2
sin(2α). (B.11)

From Eqs. (B.1-B.3) we can derive an equation for the fixed points Ψ∗ of the order
parameter given by Eq. (18). Assuming that Ψ∗ is small and neglecting terms of higher
order than Ψ∗5 we obtain

d1

π
Ψ∗ =M2 c112c211

π3d2

Ψ∗3 +M4c312c123c211
c211 + c112

π5d3d2
2

Ψ∗5, (B.12)

where

d1 =
1 +M

sin(η/2)

η

2
− 1−Mg0c101, (B.13)

d2 =
1 +M

sin(η)
η − 1−Mg0c202, (B.14)

d3 =
1 +M

sin(3η/2)

3η

2
− 1−Mg0c303. (B.15)

The principal behavior of the system was discussed in [11]. If d1 > 0 the fixed point
g1 = 0 is stable and for d1 < 0 it is unstable. The critical noise strength ηc is determined
by the condition d1 = 0.

If the coefficient of the cubic term in Eq. (B.12) is positive the transition at ηc
appears discontinuous, if it is negative the transition appears continuous and if it is
zero the quintic term has to be considered and the transition is still continuous, where
we assumed a homogeneous system in all cases. Independently on the noise strength,
the cubic term vanishes only at one critical point αc. For α < αc the transition is
discontinuous and for α > αc it is continuous.

For α > αc we find the leading behavior of the first mode close to ηc according to
Eq. (B.12)

Ψ∗ ≈ ±D√ηc − η (B.16)
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Figure B1. Numerical evaluation of the coefficient d3 given by Eq. (B.15) at the
tricritical point for several values of M .

with

D =
π

M

√
(1 +M)[sin(ηc/2)− ηc

2
cos(ηc/2)]d2(ηc)

−2c112c211 sin2(ηc/2)
. (B.17)

At α = αc the cubic term in Eq. (B.12) is zero and the quintic term has to be taken
into account. The term c312c123c211(c211 + c112) depends only on α and not on M or
η, at α = αc its values is [c312c123c211(c211 + c112)]α=αc ≈ −0.0359 < 0. d2

2 is always
positive and at the tricritical point d3 is also always positive, cf. Fig. B1. Therefore
the coefficient in front of the quintic term in Eq. (B.12) is negative at the tricritical
point and hence the quintic term is sufficient to find the leading behavior of the order
parameter

Ψ∗ ≈ ±D′(ηc − η)1/4, (B.18)

where

D′ =
π

M
×
{

(1 +M)d2
2(ηc)d3(ηc)[sin(ηc/2)− ηc

2
cos(ηc/2)]

−2c123c211c312(c112 + c211) sin2(ηc/2)

}1/4

. (B.19)

Eq. (B.12) was given in [11] in different notation, but the coefficients D and D′ have
not been given explicitly there.
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Appendix C. Closure of time evolution

With the geometric series ansatz for modes higher or equal to l Eq. (21) can be written
as

gk(t+ τ) =
λk

1 +M

{
gk

[1

2
+ g0M

{
π − α +

3

k
sin(kα/2)− 1

2k
sin(kα)

}]
+
M

2
α
l−2+k∑
q=1

[
gqg|k−q|

{
sinc[(k/2− q)α/π]− sinc(qα/π)

}]
+
M

2
α

l−2∑
q=1

[
gqgk+q

{
sinc[(k/2 + q)α/π]− sinc(qα/π)

}]
+
M

2
αg2

l−1

∞∑
q=l−1+k

[
µ2q−2l+2−k{ sinc[(k/2− q)α/π]− sinc(qα/π)

}]
+
M

2
αg2

l−1

∞∑
q=l−1

[
µ2q−2l+2+k

{
sinc[(k/2 + q)α/π]− sinc(qα/π)

}]}
. (C.1)

We introduce infinite sums of the type

Sk(µ, α) :=
∞∑
q=k

µq
sin(qα)

q
, (C.2)

that can be performed, cf. Appendix D, resulting in

Sk(µ, α) :=
1

2
arctan(y, x)−

k−1∑
q=1

µq
sin(qα)

q
, (C.3)

with

x =
(1− µ cosα)2 − µ2 sin2 α

(1− µ cosα)2 + µ2 sin2 α
, (C.4)

y =
2(1− µ cosα)µ sinα

(1− µ cosα)2 + µ2 sin2 α
. (C.5)

We find for even k
∞∑

q=l−1+k

µ(2q−2l+2−k) sin[(q − k/2)α]

(q − k/2)α
=

1

α
(µ2)1−l

∞∑
s=l−1+k/2

(µ2)s
sin(sα)

s

=
1

α
(µ2)1−lSl−1+k/2(µ2, α), (C.6)

∞∑
q=l−1+k

µ(2q−2l+2−k) sin(qα)

qα
=

1

α
(µ2)1−l−k/2Sl−1+k(µ

2, α), (C.7)
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∞∑

q=l−1

µ(2q−2l+2+k) sin[(q + k/2)α]

(q + k/2)α
=

1

α
(µ2)1−l

∞∑
s=l−1+k/2

(µ2)s
sin(sα)

s

=
1

α
(µ2)1−lSl−1+k/2(µ2, α), (C.8)

∞∑
q=l−1

µ(2q−2l+2+k) sin(qα)

qα
=

1

α
(µ2)1−l+k/2Sl−1(µ2, α). (C.9)

Inserting these expressions into Eq. (C.1) we obtain Eq. (25).

On the other hand for odd k we have
∞∑

q=l−1+k

µ2q−2l+2−k sin[(q − k/2)α]

(q − k/2)α
=

2

α
(µ2)1−l

∞∑
q=l−1+k

µ2q−k sin[(2q − k)α
2
]

2q − k

=
2

α
(µ2)1−l

∞∑
s=2l−2+k,s odd

µs
sin(sα

2
)

s

=
2

α
(µ2)1−l

[ ∞∑
s=2l−2+k

µs
sin(sα

2
)

s
−

∞∑
s=2l−1+k,s even

µs
sin(sα

2
)

s

]
=

2

α
(µ2)1−l

[
S2l−2+k(µ,

α

2
)− 1

2

∞∑
t=l+ k−1

2

(µ2)t
sin(tα)

t

]
=

2

α
(µ2)1−l

[
S2l−2+k(µ,

α

2
)− 1

2
Sl+ k−1

2
(µ2, α)

]
, (C.10)∑

q=l−1+k

µ2q−2l+2−k sin(qα)

qα
=

1

α
(µ2)1−l−k/2Sl−1+k(µ

2, α), (C.11)

∞∑
q=l−1

µ2q−2l+2+k sin[(2q + k)α
2
]

(2q + k)α
2

=
2

α
(µ2)1−l

∑
s=2l−2+k,s odd

µs
sin(sα

2
)

s

=
2

α
(µ2)1−l

[ ∑
s=2l−2+k

µs
sin(sα

2
)

s
−

∑
s=2l−1+k,s even

µs
sin(sα

2
)

s

]
=

2

α
(µ2)1−l

[
S2l−2+k(µ,

α

2
)− 1

2

∑
t=l+ k−1

2

(µ2)t
sin(tα)

t

]
=

2

α
(µ2)1−l

[
S2l−2+k(µ,

α

2
)− 1

2
Sl+ k−1

2
(µ2, α)

]
, (C.12)∑

q=l−1

µ2q−2l+2+k sin(qα)

qα
=

1

α
(µ2)1−l+k/2Sl−1(µ2, α). (C.13)

Inserting these equations into Eq. (C.1) we obtain Eq. (26).
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Appendix D. Oscillating geometric series

We are going to evaluate the sum in Eq. (C.2). Differentiation with respect to µ yields

∂

∂µ
S1(µ, α) =

∞∑
q=1

qµq−1 sin(qα)

q
=

1

µ

∞∑
q=1

µq sin(qα). (D.1)

Hence we find

µ
∂

∂µ
S1(µ) =

1

2i

∞∑
q=1

µq[exp(iqα)− exp(−iqα)]

=
1

2i

∞∑
q=1

(
exp[q(ln(µ) + iα)]− exp[q(ln(µ)− iα)]

)
=

1

2i

(
exp[(ln(µ) + iα)]

1− exp[ln(µ) + iα]
− exp[(ln(µ)− iα)]

1− exp[ln(µ)− iα]

)
=

1

2i

(
µk exp(iα)

1− µ exp(iα)
− µk exp(−iα)

1− µ exp(−iα)

)
=
µ

2i

[
(1− µ exp[−iα]) exp[iα]− (1− exp[iα]) exp[−iα]

]
/[1 + µ2 − 2µ(exp[iα] + exp[−iα])]

=
µ

2i

[
exp(iα)− exp(−iα)

]
/[1 + µ2 − 2µ cosα] = µ

[
sinα

1 + µ2 − 2µ cosα

]
. (D.2)

Thus we have

∂

∂µ
S1(µ, α) =

sinα

1 + µ2 − 2µ cosα
. (D.3)

Integration yields

S1(µ, α) = sinα

∫ µ

0

dλ
1

1 + λ2 − 2λ cosα
. (D.4)

We use the decomposition into partial fractions

1

1 + λ2 − 2λ cosα
=

1

2i sinα

[
1

λ− cosα− i sinα
− 1

λ− cosα + i sinα

]
=

1

2i sinα

[ 1

λ− A −
1

λ−B
]
, (D.5)

where we introduced the abbreviations

A = cosα + i sinα, B = cosα− i sinα. (D.6)
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Inserting Eq. (D.5) into Eq. (D.4) we obtain

S1(µ, α) =
1

2i

∫ µ

0

dλ

[
1

λ− A −
1

λ−B

]
=

1

2i

[ ∫ µ−A

−A
dλ′

1

λ′
−
∫ µ−B

−B
dλ′

1

λ′

]
=

1

2i

(
ln
µ− A
−A − ln

µ−B
−B

)
=

1

2i

(
ln

(µ− A)B

(µ−B)A

)
=

1

2i

[
ln

(µ− cosα− i sinα)(cosα− i sinα)

(µ− cosα + i sinα)(cosα + i sinα)

]
=

1

2i

[
ln

1− µ cosα + iµ sinα

1− µ cosα− iµ sinα

]
=

1

2i

{
ln
[(1− µ cosα)2 − µ2 sin2 α

(1− µ cosα)2 + µ2 sin2 α
+ i

2(1− µ cosα)µ sinα

(1− µ cosα)2 + µ2 sin2 α

]}
=

1

2i

{
ln 1 + i arg

[(1− µ cosα)2 − µ2 sin2 α

(1− µ cosα)2 + µ2 sin2 α
+ i

2(1− µ cosα)µ sinα

(1− µ cosα)2 + µ2 sin2 α

]}
=

1

2
arctan(y, x), (D.7)

where x, y are given by Eqs. (C.4), (C.5). Obviously for k > 1 the sum Sk is obtained
as

Sk(µ, α) = S1(µ, α)−
q=k−1∑
q=1

µq
sin(qα)

q
(D.8)

resulting in Eq. (C.3).
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