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NONLINEAR THEORY

In the following we give the derivation of Eq. (7). Consider a family of maps Fη : Rn → Rn. In the present system
the map F is given by Eq. (1). We assume that each map has a single globally attractive stable fixed point x∗η such
that Fη(x∗η) = x∗η. We define the shifted coordinate y and map Gη by

y := x− x∗ηf , Gη(y) := Fη(y + x∗ηf )− x∗ηf (S.1)

such that

Gηf (0) = 0. (S.2)

We denote the fixed point of Gη by

y∗η := x∗η − x∗ηf . (S.3)

Furthermore we define the relaxation map

Hη(y − y∗η) := Gη(y)− y∗η (S.4)

which has the property that limt→∞Ht
η(y) = 0. Let

y(t = 0) = y∗η1 , (S.5)

for 0 < t ≤ tw

y(t) = Gtη2(y(t = 0)) = Gtη2(y∗η1) = y∗η2 +Ht
η2(y∗η1 − y∗η2) (S.6)

and for t > tw

y(t) = Gt−twηf
(y(tw)) = Gt−twηf

(y∗η2 +Htw
η2 (y∗η1 − y∗η2)) = Ht−tw

ηf
(y∗η2 +Htw

η2 (y∗η1 − y∗η2)) (S.7)

where the last line follows from y∗ηf = 0. So far we have only formulated the dynamics of the system and Eq. (S.7) is
exact. Assuming that the changes of the noise strength η1 − ηf and η2 − ηf are small, of order ε, and neglecting all
terms of higher order than ε we rederive Eq. (2), cf. Sec. II.

In a different approach we keep the full dependence on the changes of the noise strength by now. We replace Ht−tw
ηf

by its linearization
[
Ht−tw
ηf

]L such that Eq. (S.7) becomes

y(t) ≈
[
Ht−tw
ηf

]L
(y∗η2) +

[
Ht−tw
ηf

]L
(Htw

η2 (y∗η1 − y∗η2)) ≈ Ht−tw
ηf

(y∗η2) +
[
Ht−tw
ηf

]L
(Htw

η2 (y∗η1 − y∗η2))

= y2f (t− tw) +
[
Ht−tw
ηf

]L
(Htw

η2 (y∗η1 − y∗η2)) (S.8)

Furthermore we also replace the map Htw
η2 by its linearization

[
Htw
η2

]L and hence Eq. (S.8) becomes

y(t) =y2f (t− tw) +
[
Ht−tw
ηf

]L
(
[
Htw
η2

]L
(y∗η1))−

[
Ht−tw
ηf

]L
(
[
Htw
η2

]L
(y∗η2)). (S.9)

We denote the eigenvalues of
[
Ht
η

]L by λη,t1 ≥ λ
η,t
2 ≥ · · · ≥ λη,tn and the corresponding eigenvectors by vη,t1 ,vη,t2 , . . . ,vη,tn .

For t = tw we assume a separation of time scales, property (i) which is checked numerically below, that means

λη,tw1 � λη,tw2 . (S.10)



2

Therefore we can assume that at tw only the first eigenvector is relevant and all others are much smaller, thus

[
Htw
η2

]L
(y) =

n∑
k=1

λη2,twk (y · vη2,twk )vη2,twk ≈ λη2,tw1 (y · vη2,tw1 )vη2,tw1 (S.11)

We further assume that the eigenvector belonging to the largest eigenvalue is not sensitive to moderate changes in η
and t, property (ii) which is checked numerically below. That means we assume that

vη2,tw1 ≈ v
ηf ,t̃
1 (S.12)

when t̃ has the same order of magnitude as tw. Then we choose t̃ such that

λη2,tw1 = λ
ηf ,t̃
1 (S.13)

and hence from Eq. (S.11) we obtain[
Htw
η2

]L
(y) ≈ λη2,tw1 (y · vη2,tw1 )vη2,tw1 ≈ ληf ,t̃1 (y · vηf ,t̃1 )v

ηf ,t̃
1 ≈

[
H t̃
ηf

]L
(y). (S.14)

Plugging this expression into Eq. (S.9) we obtain

y(t) =y2f (t− tw) +
[
Ht−tw
ηf

]L
(
[
H t̃
ηf

]L
(y∗η1))−

[
Ht−tw
ηf

]L
(
[
H t̃
ηf

]L
(y∗η2))

≈y2f (t− tw) +Ht−tw
ηf

(H t̃
ηf

(y∗η1))−Ht−tw
ηf

(
[
H t̃
ηf

(y∗η2))

=y2f (t− tw) + y1f (t+ t̃− tw)− y2f (t+ t̃− tw) (S.15)

Resubstituting y according to Eq. (S.1) and introducing the abbreviation

t̂ := tw − t̃ (S.16)

we obtain Eq. (7).

The basic assumptions in the derivation of Eq. (7) are properties i) and ii) that are mathematically given by the
conditions (S.10) and (S.12). In the letter, we have argued intuitively that these assumptions should be valid in the
present system. For the example presented in Fig. 2 we can also explicitly verify those conditions numerically. The
time evolution map F is explicitly given by Eq. (1). Evolving the system for a very long time we obtain the stable
fixed point of the map. Thus we can also evolve the map H, cf. Eq. (S.4).

To verify condition (S.10) we need to obtain the eigenvalues λη,ti of [Ht
η]L. As a rough estimate we can instead

calculate the eigenvalues ληi of [Hη]L and assume λη,ti ∼ (ληi )t. Given the fixed point of the system, the linearization
of Hη can be performed analytically. For the parameters of Fig. 2 we obtain for the two largest eigenvalues

(λη21 )tw ≈ 8.2× 10−2 � (λη22 )tw ≈ 1.6× 10−7. (S.17)

Thus our assumption (S.10) is valid.

To verify the condition (S.12) we use a robust numerical procedure to obtain the largest eigenvalue and the corre-
sponding eigenvector of [Ht

η]L [S1]. For parameters like in Fig. 2 we find that Eq. (S.13) is valid for t̃ = 408. Knowing

t̃ we can calculate the scalar product of the normalized eigenvectors vη2,tw1 · vηf ,t̃1 ≈ 0.963 which indicates that the
eigenvector v1 did not change a lot and Eq. (S.12) is a reasonable assumption.

As we have predicted the value of t̃ we can also calculate the time shift t̂ = 337 according to Eq. (S.16). In Fig. 2
we used the time shift t̂ = 332 that was chosen such that the Kovacs-hump has the correct value at t = tw. Hence our
numerical prediction for t̂ deviates by about 1% from the correct value. This is not surprising since the assumption
(S.12) is not satisfied perfectly and also the linearization of Ht

η might introduce some deviations.

Our result (7) describes a relation between vectors of all Fourier modes. Thus it is holding not only for the polar
order parameter Ψ = πg1 which corresponds to the first Fourier mode but it is much more general. In Fig. S1 we
show the relaxation curves and the Kovacs-hump of the second Fourier mode following the same Kovacs-protocol as
the order parameter in Fig. 2. We find that the relation (7) fits the data well using the same time shift t̂ as in Fig. 2.
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FIG. S1. The relaxation curves x2,η1→ηf (t), x2,η2→ηf (t) (dash-dotted line) and the Kovacs-hump x2(t) (solid red line) of the
second Fourier mode g2 obtained from the kinetic theory (1) are in good agreement with agent-based simulations (light green
squares and light red circles, respectively). The nonlinear theory (7) with the same time shift as in Fig. 2, t̂ = 332, (dotted
blue line) fits well. Parameters are as in Fig. 2.

LINEAR THEORY

We assume that

η1 − ηf = a1ε, η2 − ηf = a2ε, (S.18)

where ε is small and a1 and a2 are of similar size, a1, a2 ∼ 1. We expand the fixed points

y∗η1 = εa1y
∗
0 +O(ε2), y∗η2 = εa2y

∗
0 +O(ε2) (S.19)

for some constant vector y∗0. Inserting these fixed points into the exact expression (S.7) we obtain

y(t) = Ht−tw
ηf

(εa2y
∗
0 +Htw

η2 (ε(a1 − a2)y∗0 +O(ε2)) +O(ε2))

= Ht−tw
ηf

(ε[a2y
∗
0 + (a1 − a2)([Hη2 ]L)tw(y∗0)] +O(ε2)), (S.20)

where [Hη2 ]L denotes the linearization of Hη2 . The linear map [Hη2 ]L depends on ε via η2 and thus we can expand
it for small ε. Only the leading term is necessary since we neglect terms of order ε2. Thus we obtain

y(t) = Ht−tw
ηf

(ε[a2y
∗
0 + (a1 − a2)([Hηf ]L)tw(y∗0)] +O(ε2)). (S.21)

Since the map [Hη2 ]L is applied tw times, terms of order ε2 come with a prefactor of tw. Therefore they can be
neglected only if 1/ε� tw. For not too small changes in η and long waiting times this assumption is not maintainable
and the linear theory cannot be applied. This is the reason why Eq. (2) fails completely for long waiting times.

Continuing the expansion of Eq. (S.21) for small ε we obtain

y(t) = ε([Hηf ]L)t−tw(a2y
∗
0 + (a1 − a2)([Hηf ]L)tw(y∗0)) +O(ε2)

=
a2
a1

([Hηf ]L)t−tw(εa1y
∗
0) +

a1 − a2
a1

([Hηf ]L)tw(εa1y
∗
0) +O(ε2)

=
a2
a1

y1f (t− tw) +
a1 − a2
a1

y1f (t) +O(ε2) (S.22)

Evaluating this equation at t = 0, resubstituting x according to Eq. (S.3) and observing only x1 = Ψ/π we find γ
according to Eq. (3) as

γ =
a2

a2 − a1
. (S.23)

With this abbreviation Eq. (S.22) becomes

y(t) =
1

1− γ
y1f (t)− γ

1− γ
y1f (t− tw). (S.24)

From the first vector component of this equation we obtain Eq. (2). Thus we rederived the linearized theory [43] in
the context of time-discrete dynamical systems.
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FIG. S2. Angular probability density p(θ) during the Kovacs-protocol at different times before tw = 745: t = 0 (black solid
line), t = 100 (red dashed line) and t = 700 (blue dotted line). Parameters like in Fig. 2.

SLOW RELAXATION MECHANISM

In this section, we discuss the slow relaxation mechanism that leads to strong memory effects. In Fig. S2, we display
snap shots of the angular probability density at times t = 0, 100, 700 < tw following the relaxation from η2 to ηf
which is the first part of the Kovacs-protocol presented in Fig. 2. The direction of the majority of the particles is
centered around (0 mod 2π). After t = 100 this dominating peak is already relaxed towards its steady state shape.
However, there is a small population of particles that move in the opposite direction θ = π. Due to the bounded
confidence interaction rule, these particles do not interact with the large group of particles that move in direction
θ = 0. Therefore they reorient mainly due to noise. If the noise strength is small, this process is very slow and it takes
a long time until the population moving into direction θ = π has reorientated and the system has reached its steady
state. Apparently this noise driven mechanism is the slowest relaxation mode of the system. Moderate changes of the
noise strength change the relaxation speed significantly, however, the noise driven reorientation of a minor population
remains the slowest relaxation mode of the system.

COEFFICIENTS AND NUMERICAL PARAMETERS

We give the coefficients of Eq. (1), cf. Refs. [27, 29] for a derivation. They depend on the noise strength η, the
average number of other particles within interaction distance M and the maximal angular difference α between two
particles directions that still leads to interactions.

λk(η,M) =
sin(kη/2)

1 +M

4

kη
, Ak(M,α) =

1

2
+ x0M

{
π − α+

3

k
sin(kα/2)− 1

2k
sin(kα)

}
,

Bkq(M,α) =
M

2
α
{

sinc[(k/2− q)α/π]− sinc(qα/π)
}
, Ckq(M,α) =

M

2
α
{

sinc[(k/2 + q)α/π]− sinc(qα/π)
}
.

In Figs. 1 and 2 we compare the kinetic theory (1) with agent-based simulations. We simulated at M = 0.2,
where the low density approximation is not perfect. Therefore, the order parameter is slightly different in agent-
based simulations. For a better comparison with the kinetic theory we used minimally different noise strengths in
the simulations, such that the steady state order parameter coincides with the kinetic theory. We used for Fig. 1
η1 = 0.38, η2 = 0.46, ηf = 0.395 and for Fig. 2 η1 = 0.34, η2 = 0.197 and ηf = 0.29.

We obtained the data of Fig. 3 by numerically integrating Eqs. (6a) and (6b) of Ref. [37]. We used the parameters
α = 0.3 and d = 2. We followed the Kovacs-protocol with waiting time tw = 1.864 and stationary temperatures
Ts,2 = 10−4/3 · Ts,1 and Ts,f = (1.01)4/3 · Ts,2. The absolute value of Ts,1 is not relevant, since we investigate only

relative quantities, cf. Ref. [37] for more details. In Fig. 3 we present β =
√

Ts,2

T .
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DRIVEN GRANULAR GAS

In this section we discuss the application of Eq. (7) to the driven granular gas of Ref. [37]. In order to apply
Eq. (7), properties (i) and (ii) must be satisfied. In order to fulfill these conditions we have chosen the steady state
granular temperatures Ts,2 and Ts,f close to each other. This way, we achieve a long waiting time since the steady
state order parameter at Ts,2 is very close to the one of Ts,f and therefore the system is almost completely relaxed
at tw. Hence, it is a reasonable assumption that all but the slowest eigenmodes have already completely relaxed and
property (i) is justified. Property (ii) is clearly justified with good approximation when Ts,2 and Ts,f are chosen close
enough to each other, because then the dynamics is changed only a little and the slowest eigenmodes remain almost
constant. Here, we can also assume that the corresponding eigenvalues are almost the same and therefore t̂ ≈ 0.
Thus, when Ts,2 and Ts,f are chosen close enough together, properties (i) and (ii) are valid and therefore Eq. (7) is
applicable. By this choice of stationary granular temperatures we expect only a small Kovacs-effect. However the
Kovacs-effect reported in Ref. [37] is very small for all choices of parameters anyway.

The interesting feature of this particular system is that the Kovacs-hump can have the opposite sign. This property
can be understood investigating Eq. (7). Since Ts,2 is close to Ts,f and t̂ ≈ 0 it is clear that the term x2f (t) is almost
constant for large t. Taking the time derivative of Eq. (7) on the right-hand side only the terms x′2f (t − tw) and
x′1f (t) remain. They carry the opposite sign. Which of them is dominating determines the sign of the Kovacs-effect.
Apparently both cases are possible depending on parameters.

[S1] To determine the largest eigenvalue of [Ht
η]
L we fix a small parameter δ, here δ = 0.01. We start with the initial vector x

given by x1 = 1 and xi = 0 for i > 1. We then replace x by Ht
η(δ · x)/||Ht

η(δ · x)||, such that always ||x|| = 1. This step is
repeated many times. In this way all eigenvectors but the one that corresponds to the largest eigenvalue decay. Eventually
x converges and the largest eigenvalue is obtained by λη,t1 = ||Ht

η(δ · x)||/δ and x is the corresponding eigenvector.


