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I. STRUCTURE OF THE SUPPLEMENTAL

This supplemental material is organized as follows. In
Sec. II we give the details of the derivation of the main
theoretical result, Eqs.(3) and (4). In Sec. III we provide
efficient algorithms to sample the parameters of the dis-
tribution given by Eqs. (2) and (5). In Sec. IV we derive
explicit formulas to calculate the overlap area of two and
three disks in two dimensions. In Sec. V we precisely
define the models that are investigated in this paper and
present additional numerical results.

II. SPATIAL CORRELATIONS

We assume that we have N identical particles that
are in a random state. Furthermore we assume that
N is large such that is reasonable to consider the limit
N →∞ when necessary. We denote the N -particle prob-
ability density by PN (1, 2, ..., N), where 1 represents all
degrees of freedom of particle one like e.g. position, ve-
locity or orientation. Similarly 2, ..., N represent all de-
grees of freedom of particles 2 to N . We assume that PN
is invariant under permutations of its arguments which
should be the case at least in a stationary state. The
k-particle probability density is obtained from PN by

Pk(1, 2, ..., k)

:=

∫
PN (1, 2, ..., N)d(k + 1)d(k + 2) . . .dN, (S.1)

where the integration is performed over all possible con-
figurations of theN−k particles. We assume furthermore
that the one-particle probability density P1 is spatially
homogeneous, that is it does not depend on the posi-
tion of the considered particle. As long as there are no
deterministic external forces and no walls all those as-
sumption must be satisfied for finite ergodic systems in
the stationary state.

We define the k-particle correlation function Gk by

G1(1) :=P1(1),

Gk(1, ..., k) :=Pk(1, ..., k)

− all possible combinations of
{G1, ..., Gk−1},
where each of the arguments {1, .., k}
appears exactly once. (S.2)

For example we have for two-particle and three-particle
correlation function

G2(1, 2) :=P2(1, 2)− P1(1)P1(2),

G3(1, 2, 3) :=P3(1, 2, 3)− P1(1)G2(2, 3)− P1(2)G2(1, 3)

− P1(3)G2(1, 2)− P1(1)P1(2)P1(3), (S.3)

which is also called cluster-expansion. For a homoge-
neous system, we can express G2 depending only on the
positions r1 and r2 in terms of the pair correlation func-
tion also called radial distribution function g(r)

G2(r1, r2) =
1

V 2
[g(|r2 − r1|)− 1]. (S.4)

In equilibrium thermodynamics, the knowledge of g(r) is
sufficient to obtain the equation of state as long as only
two-particle interactions are involved. The calculation of
certain quantities such as thermal expansion coefficient
or heat capacity involves partial derivatives of the pair
correlation function with respect to pressure or tempera-
ture. Those are directly related to expressions involving
higher order correlation functions. Thus, one might ar-
gue that certain macroscopic quantities depend directly
on higher order correlation functions even in equilibrium.
On the other hand, knowing the pair correlation func-
tion for all pressures and temperatures is equivalent in
equilibrium. Hence, strictly speaking, it is not necessary
to study higher order correlations of systems with two-
particle interactions. From a practical point of view, it
might be reasonable to study higher order correlations
any way, if the pair correlation function is known only
for special values of temperature and pressure or if multi-
particle correlations are involved.
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Reformulating Eq. (S.2) one can also obtain the k-
particle probability from the one-particle probability and
the correlation functions. For example one finds the re-
cursion relation

Pk(1, ..., k) =

k∑
l=1

Gl(1, ..., l)Pk−l(l + 1, ..., k)

+ Permutations, (S.5)

where we sum over permutations of {2, .., k} that are not
only interchanging the arguments of each function, but
exchange at least one argument of Gl and Pk−l.

From the above definitions it is straight forward to find∫
G2(1, 2)d1 = P1(2)− P1(2) = 0

= P1(1)− P1(1) =

∫
G2(1, 2)d2. (S.6)

Similarly, one can show by induction that in general∫
Gk(1, . . . , k)d1 =

∫
Gk(1, . . . , k)d2 = . . .

=

∫
Gk(1, . . . , k)dN = 0. (S.7)

The mean field assumption

PN (1, 2, . . . , N) = P1(1)P1(2) . . . P1(N) (S.8)

is identical to setting all correlation functions to zero

G2 = G3 = · · · = GN = 0. (S.9)

Considering the full hierarchy of correlation functions is
extremely complex and the question arises which of the
correlation functions are important and have to be con-
sidered. Is mean field already an excellent approxima-
tion? Or is it necessary to consider at least G2? Or also
G3? Or do we need to take all correlations into account
to obtain a good description of the system?

The correlation functions G2, G3, . . . , GN are high di-
mensional and therefore hard to measure. Furthermore,
it is not clear if it is important or not for the dynamics
of P1 if one of the correlation functions is large at some
particular values of its arguments.

However, the microscopic dynamics of a particle de-
pends explicitly on the number of its neighbors. Hence,
we know for sure that the probability distribution of the
number of neighbors has an explicit influence on the dy-
namics of P1. Therefore we study the influence of the
correlation functions G2, G3, . . . on the number of neigh-
bor probability distribution.

A. Bernoulli experiment

The mean field assumption (S.9) corresponds to the
random placement of independent particles. Asking for

the number of particles in a circle of radius R we will find
the answer to be Poisson-distributed in the limitN →∞.
In the mean field case the number of neighbors of a given
particle have the same probability distribution.

Here, however, we take correlations into account. As a
first step we consider a nonzero G2, however, we assume
that higher correlations are zero, that is G3 = G4 = · · · =
GN = 0. In this case, we can still calculate the distri-
bution of particles within a circle exactly in the limit of
N →∞. It is useful to define the parameter Ck accord-
ing to

Ck := Nk

∫
Gk(1, ..., k)

k∏
l=1

θ(R− |rl|)dl. (2)

In particular we get for the two-particle correlations

C2 := N2

∫
G2(1, 2)d1 d2 θ(R− |r1|)θ(R− |r2|),

(S.10)

where θ denotes the Heavyside function. The coefficient
migh also be expressed in terms of the pair correlation
function for homogeneous systems as

C2 =

(
N

V

)2 ∫
R2

[g(|r2 − r1|)− 1] (S.11)

× θ(R− |r1|)θ(R− |r2|)dr1dr2.

It is worth noting that changing one of the spatial inte-
gration regions to the outside of the circle yields

−C2 = N2

∫
G2(1, 2)d1d2θ(R− |r1|)[1− θ(R− |r2|)]

= N2

∫
G2(1, 2)d1d2[1− θ(R− |r1|)]θ(R− |r2|)

(S.12)

due to the property (S.7) of G2. Integrating both spatial
coordinates outside the circle yields again

C2 = N2

∫
G2(1, 2)d1d2[1− θ(R− |r1|)]

× [1− θ(R− |r2|)]. (S.13)

The probability to find s particles within a circle is given
by

p(s) =

(
N

s

)∫
d1 . . .dNPN (1, . . . , N)θ1 . . . θs

× (1− θs+1) . . . (1− θN ), (S.14)

where we introduced the abbreviation

θk := θ(R− |rk|) (S.15)

and we included the combinatorial factor
(
N
s

)
to take

care of the fact that any selection of s particles can be
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integrated over the inside of the circle and the rest over
the outside. Inserting a sum over all possible combina-
tions of P1 and G2 for PN , that is setting G3 = G4 =
· · · = GN = 0 in the full hierarchy of PN , Eq. (S.2), we
obtain

p(s) =

∞∑
k2=0

(
C2

N2

)k2( N

2k2

)(
2k2

k2

)
k2!

2k2

×
∞∑
k1=0

(
− C2

N2

)k1(N − 2k2

2k1

)(
2k1

k1

)
k1!

×
∞∑
k0=0

(
C2

N2

)k0(N − 2k2 − 2k1

2k0

)(
2k0

k0

)
k0!

2k0

×
∞∑
q1=0

(
C1

N

)q1(N − 2k2 − 2k1 − 2k0

q1

)

×
∞∑
q0=0

(
1− C1

N

)q0
δ(s− 2k2 − k1 − q1)

× δ(N − 2k2 − 2k1 − 2k0 − q1 − q0) (S.16)

with the convention that
(
N
l

)
= 0 if l > N . k2 represents

the number of pairs (G2) where both arguments are inte-
grated over the inside of the circle and the following com-
binatorial factor is the number of possibilities to choose
k2 pairs from N particles. k1 is the number of pairs
with one argument integrated over the circles inside and
one argument integrated over the outside. The following
combinatorial factor gives the number of possible choices
of k1 ordered pairs from the remaining N −2k2 particles.
k0 represents the number of pairs where both arguments
are integrated over the outside of the circle, analogously
q1 and q0 are the numbers of single particles (P1) inte-
grated over the circles inside and outside, respectively.
There, we also include the corresponding combinatorial
factors. The first δ-function takes care that there are
exactly s particles inside and the second one, that there
are exactly N particles in total. All the combinatorial
factors can be combined to

N !

(N − 2k0 − 2k1 − 2k2 − q1)!q1!k0!k1!k2!2k02k2
. (S.17)

For large N we can approximate

N !

(N − 2k0 − 2k1 − 2k2 − q1)!
= N · (N − 1) · . . .

× (N − 2k0 − 2k1 − 2k2 − q1 + 1)

≈ N2k0+2k1+2k2+q1 . (S.18)

All corrections are of lower order in N and are eventually
going to zero as N → ∞. Inserting (S.18) in (S.16) and

performing the sum over q0 with the second δ we obtain

p(s) =

∞∑
k2=0

(
C2

2

)k2 ∞∑
k1=0

(−C2)k1
∞∑
k0=0

(
C2

2

)k0 ∞∑
q1=0

Cq11

×
(

1− C1

N

)N−2k0−2k1−2k2−q1 1

k0!k1!k2!q1!

× δ(s− 2k2 − k1 − q1). (S.19)

In the limit N →∞ we obtain(
1− C1

N

)N−2k0−2k1−2k2−q1
→ exp(−C1) (S.20)

such that we find

p(s) =

∞∑
k0=0

(
C2

2

)k0 exp(−C2/2)

k0!

∞∑
k2=0

(
C2

2

)k2
×
∞∑
k1=0

(−C2)k1
∞∑
q1=0

Cq11 exp(−C1) exp(C2/2)
1

k1!k2!q1!

× δ(s− 2k2 − k1 − q1). (S.21)

The sum over k0 is just a sum over a Poisson distribution
which gives one. Performing also the sum over q1 with
the δ we obtain

p(s) = Cs1 exp(−C1) exp(C2/2)

∞∑
k2=0

(
C2

2C2
1

)k2 1

(k − 2k2)!

× 1

k2!

k−2k2∑
k1=0

(
− C2

C1

)k1
1s−2k2−k1 (s− 2k2)!

k1!(s− 2k2 − k1)!
.

(S.22)

Using the binomial theorem to perform the sum over k1

we obtain

p(s) = Cs1 exp(−C1) exp(C2/2)

∞∑
k2=0

(
C2

2C2
1

)k2
× 1

k2!(s− 2k2)!

(
1− A

M

)k−2k2

= (C1 − C2)s exp(C2/2− C1)

×
∞∑
k2=0

[
C2

2(C1 − C2)2

]k2 1

k2!(s− 2k2)!
(1)

Eventually, this sum can be expressed as

p(s) =
Cs1 exp(−C1)

s!
exp(C2/2)

(
1− C2

C1

)s
×
(
− (C2 − C1)2

2C2

)(1−s)/2

× U [(1− k)/2, 3/2,−(C2 − C1)2/(2C2)], (S.23)

where U(., ., .) is the confluent hypergeometric function
of the second kind.
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Considering the form of p(s) given by Eq. (1) it is
possible to calculate the characteristic function χ(u) :=∑
s p(s) exp(ius) exactly by first performing the sum over

s and than the remaining sum over k2. The surprisingly
simple result is given by

χ(u) = 〈exp(ius)〉

= exp

[
− C1 +

C2

2
+ (C1 − C2) exp(iu)

+
C2

2
exp(i2u)

]
. (S.24)

Taking into account nonzero three-particle correla-
tions, however, still assuming G4 = G5 = ... = GN = 0
we find in complete analogy to Eq.(S.16) the probabil-
ity of finding exactly s particles within a given circle of
radius R as

p(s) =

∞∑
l0=0

(−C3

N3

)l0(N
3l0

)(
3l0
l0

)(
2l0
l0

)
(l0!)2

6l0

×
∞∑
l1=0

(
C3

N3

)l1(N − 3l0
3l1

)(
3l1
l1

)(
2l1
l1

)
(l1!)2

2l1

×
∞∑
l2=0

(−C3

N3

)l2(N − 3l0 − 3l1
3l2

)(
3l2
l2

)(
2l2
l2

)
(l2!)2

2l2

×
∞∑
l3=0

(
C3

N3

)l3(N − 3l0 − 3l1 − 3l2
3l3

)

×
(

3l3
l3

)(
2l3
l3

)
(l3!)2

6l3

×
∞∑
k0=0

(
C2

N2

)k0(N − 3l

2k0

)(
2k0

k0

)
k0!

2k0

×
∞∑
k1=0

(
− C2

N2

)k1(N − 3l − 2k0

2k1

)(
2k1

k1

)
k1!

×
∞∑
k2=0

(
C2

N2

)k2(N − 3l − 2k0 − 2k1

2k2

)(
2k2

k2

)
k2!

2k2

×
∞∑
q0=0

(
1− C1

N

)q0(N − 3l − 2k

q0

)

×
∞∑
q1=0

(
C1

N

)q1
δ(s− l1 − 2l2 − 3l3 − k1 − 2k2 − q1)

× δ(N − 3l − 2k − q), (S.25)

where l = l0 + l1 + l2 + l3, k = k0 +k1 +k2 and q = q0 +q1.
Here li denotes the number of correlated triplets with
exactly i particles inside the circle. Analogously ki and
qj are the numbers of correlated pairs or singlets with
exactly i and j particles inside the circle, respectively.

Simplifying the combinatorial factors we obtain

p(s) =
∑
...

(−C3

6

)l0(C3

2

)l1(−C3

2

)l2(C3

6

)l3(C2

2

)k0
× (−C2)k1

(
C2

2

)k2(
1− C1

N

)q0
Cq11

× N !

(N − 3l − 2k − q0)!N3l+2k+q1

× δ(s− l1 − 2l2 − 3l3 − k1 − 2k2 − q1)

l0!l1!l2!l3!k0!k1!k2!q0!

× δ(N − 3l − 2k − q). (S.26)

Performing the sum over q0 with the second δ we obtain

p(s) =
∑
...

(−C3

6

)l0(C3

2

)l1(−C3

2

)l2(C3

6

)l3(C2

2

)k0
× (−C2)k1

(
C2

2

)k2(
1− C1

N

)N−3l−2k−q1
Cq11

× N !

(N − 3l − 2k − q1)!N3l+2k+q1

× δ(s− l1 − 2l2 − 3l3 − k1 − 2k2 − q1)

l0!l1!l2!l3!k0!k1!k2!q1!
. (S.27)

Performing the limit N →∞ we obtain

(
1− C1

N

)N−3l−2k−q1
→ exp(−C1)

N !

(N − 3l − 2k − q1)!N3l+2k+q1
→ 1. (S.28)

Performing the sums over l0 and k0

∞∑
l0=0

(−C3/6)l0

l0!
= exp(−C3/6),

∞∑
k0=0

(C2/2)k0

k0!
= exp(C2/2) (S.29)

we obtain

p(s) =
∑
...

(
C3

2

)l1(−C3

2

)l2(C3

6

)l3
(−C2)k1

×
(
A

2

)k2
Cq11 exp(−C1 + C2/2− C3/6)

× δ(s− l1 − 2l2 − 3l3 − k1 − 2k2 − q1)

l1!l2!l3!k1!k2!q1!
. (S.30)

Performing the sum over q1 with the δ and the binomial
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sums over l1 and k1 we find

p(s) =
∑
l2l3k2

exp(−C1 + C2/2− C3/6)

[
C1 +

C3

2
− C2

]s

×
[
− 2C3

(2C1 + C3 − 2C2)2

]l2[4C3

3

1

(2C1 + C3 − 2C2)3

]l3
×
[

2C2

(2C1 + C3 − 2C2)2

]k2
× 1

l2!l3!k2!(s− 2l2 − 3l3 − 2k2)!
. (S.31)

It is possible to represent one more sum in terms of a
confluent hypergeometric function, however, we can also
handle the three remaining sums numerically. Further-
more, although Eq. (S.31) looks much more complicated
than Eq. (1) it is still possible to calculate the character-
istic function exactly by first performing the sum over s
and then all the remaining sums over k2, l2, l3 resulting
in

χ(u) = exp

[
− C1 +

C2

2
− C3

6
+

(
C1 − C2 +

C3

2

)
eiu

+

(
C2

2
− C3

2

)
ei2u +

C3

6
ei3u

]
. (S.32)

Including additionally correlations of order k the proce-
dure is completely analogous. There appear k + 1 more
sums in the analog of Eq. (S.25). Two of them can be
calculated immediately, such that one remains with k−1
additional sums. However, calculating the characteristic
function one can perform all this sums exactly and it is
possible to show by induction that

χ(u) = exp

[ lmax∑
l=1

l∑
t=0

(−1)l+t
Cl
l!

(
l

t

)
exp(itu)

]
, (3)

Eventually, the distribution of the number of particles
found in a ball of Radius R is obtained by transforming
back the characteristic function

p(s) = lim
n→∞

1

n

n−1∑
u=0

exp(−ius)χ(u). (S.33)

B. Number of neighbor distribution

If the particles were independent the distribution
(S.23) would already give the neighbor distribution of a
given particle. With nonzero pair correlations, however,
the neighbor distribution differs. The neighborhood dis-

tribution is given by

pn(k) = 〈δ(k −
N∑
j=2

θ1j)〉

=

∫
PN (1, 2, . . . )δ(k −

N∑
j=2

θ1j)

=

∫
P1(1)PN−1(2, 3, . . . )δ(k −

N∑
j=2

θ1j)

+

∫ N∑
l=2

G2(1, l)PN−2(2, . . . l − 1, l + 1, . . . )

× δ(k −
N∑
j=2

θ1j)

=

∫
P1(1)PN−1(2, 3, . . . )δ(k −

N∑
j=2

θ1j)

+

∫
(N − 1)G2(1, 2)PN−2(3, 4, . . . )δ(k −

N∑
j=2

θ1j),

(S.34)

where integration is performed over all coordinates. Sim-
ilar to Eq. (S.15) we introduced the abrreviation

θjk := θ(R− |rk − rj |). (S.35)

In the limit N →∞ we can replace N−1 by N . The first
term in the above expression corresponds to distribution
of an Bernoulli experiment, however, the second term
gives a correction

pn(k) = p(k)

+

∫
NG2(1, 2)θ12PN−2(3, 4, . . . )δ(k −

N∑
j=2

θ1j)

+

∫
NG2(1, 2)(1− θ12)PN−2(3, 4, . . . )δ(k −

N∑
j=2

θ1j)

= p(k)

+

∫
NG2(1, 2)θ12PN−2(3, 4, . . . )δ(k − 1−

N∑
j=3

θ1j)

+

∫
NG2(1, 2)(1− θ12)PN−2(3, 4, . . . )δ(k −

N∑
j=3

θ1j)

= p(k) +

∫
NG2(1, 2)θ12PN−2(3, 4, . . . )

× [δ(k − 1−
N∑
j=3

θ1j)− δ(k −
N∑
j=3

θ1j)],

= p(k) + [p(k − 1)− p(k)]N

∫
G2(1, 2)θ12, (S.36)
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where it should be noted that p(k) = 0 for k < 0.

For generalizing this result taking into account corre-
lations up to order lmax we introduce the abbreviations

Dk := Nk−1

∫
Gk(1, 2, ..., k)θ12...θ1kd1...dk, (5)

where D1 = 1 and D2 can be expressed in terms of the
pair correlation function for homogeneous systems as

D2 = 2π

(
N

V

)2 ∫ R

0

r[g(r)− 1]dr. (S.37)

In analogy to Eqs. (S.34) and (S.36) we find in this case

pn(k) =

lmax∑
l=1

l−1∑
t=0

(
l − 1

t

)
(−1)t+l+1 1

(l − 1)!
p(k − t)Dl.

(S.38)

It is straight forward to calculate the characteristic func-
tion of the number of neighbor distribution

χn(u) =

lmax∑
l=1

l−1∑
t=0

(
l − 1

t

)
(−1)t+l+1 1

(l − 1)!

×Dl exp(itu)χ(u), (4)

where χ(u) is given by Eq. (3). Hence we expressed the
number of neighbor distribution in terms of the coeffi-
cients Cl and Dl. The expression is exact in the limit
N → ∞ if the higher order correlation functions Gl ≡ 0
vanish for l > lmax.

C. Minkowski Functionals

We characterized the correlations of a set of points on
a given length scale by a view parameters, Ck and Dk.
In this subsection we mention an alternative approach
that is used to classify spatial point patterns. In particu-
lar for applications in cosmology, Minkowski functionals
are widely used to characterize spatial point patterns, see
e.g. Ref. [10] of the letter or [S1]. The idea is to draw
a ball of radius r around each point. The union of all
those balls is a subset of R3 in three dimensions. In that
case, there exist four Minkowski functionals, that can be
used to characterize this subset: volume, surface, inte-
grated mean curvature and Euler characteristics. If the
Minkowski functionals are evaluated for different values
of r they contain information on the point set and in par-
ticular also on their correlations. However, to obtain the
full information one would need to evaluate the function-
als for all radii. An advantage of the method presented
here is that the coefficients Ck, Dk contain correlation in-
formation on a given length scale (that might be known
to be relevant due to the microscopic dynamics of a sys-
tem) and on the (arbitrary) desired order.

D. Applicability for long range interactions

We defined the correlation parameters Ck, Dk on a
length scale R. This is motivated by the fact that in
many situations the microscopic interactions possess an
intrinsic length scale that is important for the dynam-
ics of the system. However, if the interactions are long
range (like e.g. Coulomb interactions) one might still ap-
ply the analysis technique. Long range interactions do
not automatically imply that there is no characteristic
length scale. Such a length scale might be selected by a
complex behavior of the system. If one has identified a
characteristic length scale for a concrete given system one
can perform the correlation analysis on that length scale.
An alternative approach is to compare the results of the
correlation analysis for many different length scales.

III. SAMPLING PARAMETERS Cl AND Dl

It is not possible to sample the parameters Cl and Dl

directly. However, they are related to two types of quan-
tities that can be sampled with high efficiency. The first
quantities are expectation values of polynomials of the
number of neighbors

µl :=

〈
k!

(k − l)!

〉
=

N−1∑
k=0

pn(k)
k!

(k − l)! (S.39)

for l = 1, 2, ... . It is straight forward to sample these
quantities by just counting the number of neighbors for
each particle in each time step and averaging the corre-
sponding polynomial of this number.

The second quantities are sums of the overlap volume
of balls of radius R drawn around all ordered l-plets of
different particles divided by the systems Volume

Vo(l) :=
1

V

〈 ∑
k1,...,kl,ki 6=kj

Voverlap(k1, ..., kl)

〉
, (S.40)

where Voverlap(k1, ..., kl) denotes the volume of the over-
lap of l balls of radius R centered at the positions of the
particles k1, ..., kl. There are two efficient ways to sam-
ple these quantities. One can either take all l-plets and
calculate the overlap volume exactly. For example for
pairs, the overlap only depends on the distance between
the particles and for triplets it depends only on the three
distances between the three particles. In two dimensions
we derive explicit formulas for the two and three particle
overlap areas in Sec. IV.

There is an alternative Monte Carlo approach that is
in particular suitable to sample also Vo(l) for large l.
Assume we we chose an ordered triplet of particles, e.g.
(7, 3, 5) and want to estimate Voverlap(7,3,5)

V . We can place
a virtual particle at a random position and count one if
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Vo(2)

Direct Measurement 7.67(17)
Monte Carlo Sampling 7.50(28)

TABLE I. Comparison of the direct measurement and the
Monte Carlo sampling of V0(2) for the standard Vicsek model.
We give the standard deviation of the mean value in brackets.
Both approaches gives similar results, except the standard
deviation of the Monte Carlo sampling is approximately 50%
larger. System parameters: N = 22500, η = 0.5, vτ/R =
5, C1 = 5, thermalization for 105 and measurement for 106

time steps for 25 realizations.

the virtual particle lies in the overlap of (7, 3, 5) that is
if it has a distance smaller than R to each of the parti-
cles 7, 3, 5. Otherwise we count zero. If we repeat the
procedure n times and divide the sum by n we obtain an
estimate of the above mentioned volume fraction.

In order to obtain an estimate for the sum in
Eq. (S.40), in principle, we need to repeat the procedure
for each ordered triplet. We can instead just sum over
all unordered triplets and multiply by l!, where l = 3 in
the case of triplets. Furthermore, we reach an extreme
improvement in performance using the same randomly
placed virtual particles for all triplets. In that way, we
just need to find out in the overlap of how many triplets
of real particles does a randomly placed real particle lie?
This number depends only on the number of real neigh-
bors of the virtual particle. Assume the virtual particle
hasm real neighbors, than it lies in the overlap of

(
m
l

)
un-

ordered or
(
m
l

)
l! ordered triplets of real particles, where

l = 3 for triplets. In general we find

Vo(l) =

〈(
m

l

)
l!

〉
, (S.41)

where m is the number of real neighbors of a randomly
placed virtual particle and the expectation value is taken
over many virtual particles and a time series of the po-
sitions of the real particles. Usually it does not signifi-
cantly slow down molecular dynamics simulations if we
use as many virtual particles as we have real particles. In
Table I we show an example of a measurement of Vo(2).
We compare the values obtained by directly measuring
the overlap areas with the Monte Carlo approach. The
measured values agree within error bars. As expected,
the uncertainty in the Monte Carlo sampling is a bit
larger (by a factor of 1.5) but on the same order of mag-
nitude. On the other hand, the Monte Carlo approach
has the advantage that one can sample Vo(l) for all l at
the same time.

We can directly connect the correlation coefficients Cl
to the sampled overlap areas. We rewrite their definition

as

Cl = N l

∫
Glθ1 . . . θld1 . . .dl

= N l

∫
Glθ01 . . . θ0ld1 . . .dl

=
N l

V

∫
Glθ01 . . . θ0ld0d1 . . .dl, (S.42)

where we invented a virtual particle 0 in the second
line. Due to translational invariance the integral does
not depend on the position of this virtual particle. Hence
we can also integrate the virtual particles position over
the whole space and compensate for it by dividing by the
total volume. For large N we have furthermore

N l

V

∫
Plθ01 . . . θ0ld0d1 . . .dl

=
N l

V

∫
PNθ01 . . . θ0ld0d1 . . .dN

≈ Vo(l), (S.43)

since the integral divided by V gives the probability
that a virtual particle is in the overlap of the particles
(1, . . . , l). However, for large N there are approximately
N l possibilities to choose an ordered l-plet from N par-
ticles.

Inserting the expansion (S.5) for Gl into Eq. (S.42) and
using Eq. (S.43) we obtain

Cl = Vo(l)−
l−1∑
k=1

CkVo(l − k)

(
l − 1

k − 1

)
, (6)

where
(
l−1
k−1

)
gives the number of permutations in (S.5)

and Vo(1) := Bd(R)NV with Bd(R) being the volume of a
ball of radius R in d dimensions.

Inserting the expansion (S.5) into the definition of the
coefficients Dl, Eq. (5), we obtain analogously

Dl = µl−1 −
l−1∑
k=1

DkVo(l − k)

(
l − 1

k − 1

)
, (7)

where

µl−1 = N l−1

∫
Plθ12 . . . θ1ld1 . . .dl

= N l−1

∫
PNθ12 . . . θ1ld1 . . .dN (S.44)

is N l−1 times the probability that particles (2, . . . , l) are
neighbors of particle one. However this can be rewritten
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as

µl−1 = N l−1
∑
s

pn(s)
1(

N−1
s

)(N − 1− (l − 1)

s− (l − 1)

)
= N l−1

∑
s

pn(s)
s!(N − 1− s)!

(N − 1)!

× (N − l)!
(N − s− 1)!(s− l + 1)!

=
∑
s

pn(s)
s!

(s− l + 1)!
(S.45)

which coincides with the previous definition of µl,
Eq. (S.39). In the first line we have the prob-
ability that there are s neighbors of particle one
times the probability that these neighbors are exactly
2, 3, . . . , l, n1, n2, . . . , ns−(l−1) times the number of possi-
ble choices for n1, n2, . . . , ns−(l−1).

Eqs. (6) and (7) are a system of linear equations relat-
ing the number of neighbor distribution parameters Cl
and Dl to the measured quantities Vo(l) and µl. We give
the coefficients explicitly up to l = 5 as

C1 =Bd(R)
N

V
,

C2 =Vo(2)− C2
1 ,

C3 =Vo(3)− 3C1Vo(2) + 2C3
1 ,

C4 =Vo(4)− 4C1Vo(3)− 3Vo(2)2

+ 12C2
1Vo(2)− 6C4

1 ,

C5 =Vo(5)− 5C1Vo(4)− 16Vo(2)Vo(3) + 48C1Vo(2)2

+ 20C2
1Vo(3)− 72C3

1Vo(2) + 24C5
1 (S.46)

and

D1 =1,

D2 =µ1 − C1,

D3 =µ2 − Vo(2)− 2C1µ1 + 2C2
1 ,

D4 =µ3 − Vo(3) + 6C1Vo(2)− 3µ1Vo(2) + 6µ1C
2
1

− 3µ2C1 − 6C3
1 ,

D5 =µ4 − Vo(4)− 4µ1Vo(3) + 8C1Vo(3)− 12µ2Vo(2)

+ 12Vo(2)2 + 24C1µ1Vo(2)− 48C2
1Vo(2)

− 4C1µ3 − 24C1
1µ1 + 12C2

1µ2 + 24C4
1 . (S.47)

Note that C1 and D1 are not related to measured quan-
tities but D1 is trivially equal to one and C1 is just the
expected number of particles within a ball of radius R,
hence it is just a system parameter.

RR

dd

FIG. S1. Overlap area of two disks. It can be calculated by
taking twice the difference of areas of the circle segment with
angle 2α and of the triangle.

IV. OVERLAP AREA OF TWO AND THREE
DISKS

A. Two Disks

For two disks of Radius R and with distance d between
the centers of the disks the overlap area can be calculated
as twice the difference of the circle segment and the trian-
gle, see Fig.S1 for a scetch. The area of the circle segment
is

Acirclesegment = αR2 (S.48)

and the area of the triangle is given by

Atriangle =
d

2
R sinα, (S.49)

where the angle α is given by

d

2
= R cosα. (S.50)

Combining these expressions we find for the overlap area

Aoverlap = 2R2 arccos

(
d

2R

)
− d

2

√
4R2 − d2. (S.51)

B. Three Disks

We calculate the overlap area of three disks of radius
R with their centers pairwise separated by distances a, b
and c. Clearly the overlap area only depends on those
three distances. Without loss of generality we assume
for simplicity a ≥ b ≥ c.

We have to consider three different cases.
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FIG. S2. Case A - no overlap of three disks although there is
a pairwise overlap for each pair.

FIG. S3. Case B - the overlap of three disks is identical to
the overlap of two of the three disks.

1. Case A- no overlap

Clearly, there is no overlap whenever a ≥ 2R since in
that case the two circles separated by a have zero overlap
area. However, even if the three disks have a pairwise
overlap for all pairs, there might be still zero overlap of
all three disks, see Fig.S2. Of cause in this case

Aoverlap = 0. (S.52)

2. Case B - two disk overlap

It might happen that the three disk overlap is identical
to the two disk overlap of the disks separated by a, see

FIG. S4. Case C - overlap of three disks - a generalization of
the Reuleaux triangle.

Fig.S3. In that case the overlap area is

Aoverlap = 2R2 arccos

(
a

2R

)
− a

2

√
4R2 − a2, (S.53)

which is identical to Eq. (S.51) with d replaced by a.

3. Case C - Reuleaux triangle like overlap

In this most interesting case the overlap is nonempty
and restricted by the boundaries of all three disks, see
Fig.S4. In the special case of a = b = c = R the over-
lap is a so called Reuleaux triangle which has important
applications in arts, architecture and engineering.

Before calculating the overlap area in the third case
it is important to find clear criteria, depending only on
a, b and c that distinguish between the cases A, B and C.
Therefor it is useful to study the transitions of A ↔ B,
A↔ C and B ↔ C by moving one of the disks.

First, we consider the transition from C to A. As soon
as the overlap area has fallen to zero we have the situ-
ation sketched in Fig.S5. The overlap consists only out
of the single point S. It has the same distance R to the
centers of the three disks. Hence, S is the center of the
circumference of the triangle given by the centers of the
disks and the circumference has radius R. If one of the
disks is now moved away from the overlap of the other
two there is no overlap at all, we are in case A, and the
radius of the circumference increases. If on the other side
one of the disks is moved towards the overlap of the other
to, the three disks overlap becomes a real area, we are in
case C, and the radius of the circumference decreases.

The transition A ↔ B occurs when a = 2R, however,
me might just consider the case that a < 2R, then this
transition is not relevant.

The Transition B ↔ C is sketched in Fig.S6. Again,
the transition occurs when the three circles intersect in
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SS

FIG. S5. Transition between cases A and C. The overlap
consists only out of the single point S. It is the center of the
circumference of the centers of the disks.

SS

FIG. S6. Transition between cases B and C. The overlap
consists only out of the overlap of only two of the disks. The
point S is the center of the circumference of the centers of the
disks.

just one point S which has the same distance R to the
centers of all three disks and thus R is the circumference
diameter. If one of the disks is moved either the over-
lap becomes just the two circle overlap, we are in case
B, and the circumference radius increases or the overlap
becomes a Reuleaux-like triangle, we are in case C, and
the circumference radius decreases.

Thus we found that case C occurs whenever for the
circumference radius it holds

rcircumference =
abc

4
√
s(s− a)(s− b)(s− c)

< R (S.54)

with s = (a+ b+ c)/2.

Whenever rcircumference ≥ R we still need to distin-
guish between cases A and B. As we assumed a < 2R
the midpoint Ma of the two disk centers separated by a

bb
aa

cc

ee1,a1,a

ee2,a2,a

vvaa

BB

CC

AA
SSaa

SSbb

SScc

FIG. S7. Sketch of the Reuleaux-like overlap.

is always in the overlap of those two disks. If we draw a
circle with diameter a around Ma and the center of the
third disk is inside this circle it follows that the three-disk
overlap is nonempty and thus we are in case B. Thales’s
theorem tells us that in this case the triangle given by
a, b, c is obtuse. Hence by Pythagoras’s theorem we con-
clude that a2 > b2 + c2 in this case. If on the other hand
the center of the third disk lies outside the circle we con-
clude that Ma is not in the three-disk overlap and hence
we can not be in case B. Thus we must be in case A.
Again by Thales’s theorem the triangle given by a, b, c
must be acute in this case and therefore by Pythagoras’s
theorem a2 < b2 + c2.

In summary, we can distinguish the cases A, B and C
by

Case A ↔ rcircumference ≥ R and a2 < b2 + c2,

Case B ↔ rcircumference ≥ R and a2 > b2 + c2,

Case C ↔ rcircumference < R. (S.55)

It remains to calculate the overlap area in case C. We
start to calculate the distances l1, l2, l3 between the cor-
ners of the overlap area. We use the carthesian coordi-
nates (

x1

y1

)
= B,

(
x2

y2

)
= C,

(
x3

y3

)
= A (S.56)

for the centers of the three disks. Hence we find for the
distances between the disk centers

a =
√

(x2 − x1)2 + (y2 − y1)2

b =
√

(x3 − x2)2 + (y3 − y2)2

c =
√

(x1 − x3)2 + (y1 − y3)2. (S.57)

We define the following unit vectors. ~e1,a points from(
x1

y1

)
to
(
x2

y2

)
, ~e1,b points from

(
x2

y2

)
to
(
x3

y3

)
and ~e1,c points

from
(
x3

y3

)
to
(
x1

y1

)
. Furthermore we define the vectors ~vi
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bb

aa

cc

AA

CC
BB

FIG. S8. We choose a coordinate system such that B =
(
0
0

)
,

C =
(
a
0

)
and A =

(
x3
y3

)
, with x3, y3 > 0.

via

~va =

(
x3 − x1

y3 − y1

)
~vb =

(
x1 − x2

y1 − y2

)
~vc =

(
x2 − x3

y2 − y3

)
. (S.58)

The unit vectors ~e2,i are defined by being perpendicular
to the corresponding unitvector ~e1,i and the property ~vi ·
~e2,i > 0, where i = a, b, c, see Fig. S7 for a sketch of the
unit vectors. They can be explicitly calculated by

~e2,i =
~vi − (~vi · ~e1,i)~e1,i

|~vi − (~vi · ~e1,i)~e1,i|
. (S.59)

It is a simple geometric consideration to calculate Sa as

Sa = Ma +
√
R2 − a2/4~e2,a, (S.60)

where Ma is the midpoint of the side a, that is Ma =
1
2 (B + C) = 1

2

(
x1+x2

y1+y2

)
. Thus we find the intersection

point between the circles Sa and analogously Sb as

Sa =
1

2

(
x1 + x2

y1 + y2

)
+

√
R2 − a2

4
~e2,a,

Sb =
1

2

(
x2 + x3

y2 + y3

)
+

√
R2 − b2

4
~e2,b. (S.61)

We are free to choose a special coordinate system such
that B =

(
0
0

)
, C =

(
a
0

)
and A =

(
x3

y3

)
with x3, y3 >

0, see Fig. S8 for a sketch. Once B and C are fixed,
the condition x3 > 0 is one of two choices, whereas the
condition y3 > 0 follows from a ≥ b ≥ c. We us the law
of cosines to calculate the angle β = ^CBA and find

cosβ =
a2 + c2 − b2

2ac
,

sinβ =

√
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

2ac
(S.62)

and hence we found all coordinates of the centers of the
disks

x1 = 0

y1 = 0

x2 = a

y2 = 0

x3 = c cosβ =
a2 + c2 − b2

2a
,

y3 = c sinβ =

√
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

2a
.

(S.63)

From our choice of the coordinate system we find

~e1,a =

(
1

0

)
,

~e2,a =

(
0

1

)
. (S.64)

As we explicitly have the coordinates of C,A we can
calculate ~e1,b from its definition and ~e2,b according to
Eq. (S.59) which results in

~e1,b =
1

2ab

(
c2 − a2 − b2√

2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4
)
,

~e2,b =
1

2ab

(−√2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4
c2 − a2 − b2

)
.

(S.65)

Plugging Eqs. (S.63), (S.64) and (S.65) into Eq. (S.61)
we find for two of the intersection points

Sa,x =
a

2
,

Sa,y =

√
R2 − a2

4
,

Sb,x =
a

2
+
a2 + c2 − b2

4a

−
√
R2 − b2

4

√
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

2ab
,

Sb,y =

√
R2 − b4

4

c2 − b2 − a2

2ab

+

√
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

4a
. (S.66)

Eventually we can calculate the distance between the
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points Sa and Sb to find

l1 : =
√

(Sa,x − Sb,x)2 + (Sa,y − Sb,y)2

=

[
−
√

2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4
2

×
(√R2 − a2

4

a
+

√
R2 − b2

4

b

)
+
c2 − b2 − a2

4

− 2

√
R2 − a2

4

√
R2 − b2

4

c2 − b2 − a2

2ab
+ 2R2

]1/2

.

(S.67)

The other two lengths l2 and l3 are obtained by permu-
tations of a, b and c.

It remains to calculate the overlap are. It consists out
of a triangle with side lengths l1, l2, l3 and three circular
caps. The triangle area is calculated by Heron’s formula,
whereas the circular caps can be calculated analogously
to the two-particle overlap. Putting everything together
we obtain the overlap area

Aoverlap = arcsin

(
l1
2R

)
·R2 − l1

2

√
R2 − l21

4

+ arcsin

(
l2
2R

)
R2 − l2

2

√
R2 − l22

4
+ arcsin

(
l3
2R

)
R2

− l3
2

√
R2 − l23

4
+
√
l(l − l1)(l − l2)(l − l3). (S.68)

V. MODELS AND NUMERICAL RESULTS

A. Vicsek model

In the letter we present numerical results of the stan-
dard two dimensional Vicsek model. In this model N
particles move at constant speed v in individual direc-
tions given by angles θi, that is

xj(t+ 1) = xj(t) + v cos θj(t),

yj(t+ 1) = yj(t) + v sin θj(t). (S.69)

where xj(t), yj(t) define the position of particle j at time
t. After each unit of time the particles instantaneously
change their directions according to the following inter-
action rule

θj(t+ 1) = arg

{ ∑
k∈Ωj(t+1)

exp[iθk(t)]

}
+ ηξi(t), (S.70)

where Ωj is the set of indexes of particles that
are within distance R of particle j such that√

(xk − xj)2 + (yk − yj)2 ≤ R for all k ∈ Ωj . We call the
particles given by Ωj the neighbors of particle j. Note

0.2 1.0 2.0 3.0 4.0 5.0
C1 = ρ πR2

1.0

0.8

0.6

0.4

0.2

0.04

η

co
rr

el
at

io
n

or
de

r

none

2

3

4

≥ 5

FIG. S9. Minimal required correlation order as in Fig. 2 of the
Letter but with a threshold of 10−2 for the Kullback-Leibler
divergence.

that it is always j ∈ Ωj . The noise strength is given
by η ∈ [0, 1] and ξj(t) are independent random variables
uniformly distributed on the interval [−π, π]. It should
be noted that the time interval of free motion between
the collisions is sometimes considered as a system param-
eter τ . However we only use τ = 1 as the only relevant
parameter is given by the product τ · v anyways. Pe-
riodic boundary conditions are used for the coordinates
xi, yi ∈ [−L/2, L/2) and φi ∈ [0, 2π).

Zero noise η = 0 leads to a completely deterministic
motion, where particles align consequently and eventu-
ally all move in the same direction for almost all initial
conditions. On the other hand, all particles move in ran-
dom directions for η = 1. To distinguish these cases it is
useful to introduce the two-dimensional polar order pa-
rameter p with |p| ∈ [0, 1] defined by

px =
1

N

N∑
j=1

cos θj , (S.71)

py =
1

N

N∑
j=1

sin θj . (S.72)

Thus |p| = 1 corresponds to the collective motion of all
particles in the same direction and |p| = 0 means that
all particles move independently in random directions.

In Figs. S9 and S10 we show the correlation map equiv-
alent to Fig. 2 of the Letter, but obtained using a different
threshold for the Kullback-Leibler divergence of 10−2 and
10−4 in Figs. S9 and S10, respectively. For these other
threshold values of the Kullback-Leibler divergence the
correlation orders are slightly shifted. However, the over
all picture remains unchanged.

In Figs. S11 and S12 we show the three- and four-
particle correlation parameters obtained from the same
simulations as we used for Fig. 3 of the Letter. They
look qualitatively similar to the two-particle correlation
parameter C2.
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FIG. S10. Minimal required correlation order as in Fig. 2
of the Letter but with a threshold of 10−4 for the Kullback-
Leibler divergence.
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FIG. S11. Ratio of three particle correlation parameter C3

and mean number of neighbors C1 for parameters as in Fig. 3
of the Letter. Black lines show the transition lines. For large
noise, when C3 is very small its measured value is sometimes
negative (not shown). In principle, the correlation parameters
can be negative, however, this is not expected to be the case
here due to the aligning interactions. Here, the negative val-
ues appear when the measurement uncertainty is larger than
the value itself.
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FIG. S12. Ratio of four particle correlation parameter C4 and
mean number of neighbors C1 for parameters as in Fig. 3 of
the Letter. Black lines show the transition lines. For large
noise, when C4 is very small its measured value is sometimes
negative (not shown).
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FIG. S13. Binder cumulant of the two-particle correlation
parameter C2 clearly showing two transitions. System pa-
rameters: N = 22500, vτ/R = 1, C1 = 5, thermalization for
105 and measurement for 106 time steps for 24 realizations.
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FIG. S14. Binder cumulant of the two-particle correlation
parameter D2 obtained from the same simulations as Fig. S13
also showing the two transitions at the same positions.
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FIG. S15. Top: Two-particle correlation parameter C2. Bot-
tom: Polar order parameter. Data from same simulations as
Fig. S13. Vertical lines show transitions obtained as minima
of the Binder cumulant in Fig. S13.
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FIG. S16. Binder cumulant of the two-particle correlation
parameter C2 clearly showing two transitions. System pa-
rameters: N = 22500, vτ/R = 5, C1 = 5, thermalization for
105 and measurement for 106 time steps for 25 realizations.

In Figs. S13, S14 and S15 we display the Binder cumu-
lants of the two-particle correlation parameters C2 and
D2, the mean value of C2 and the polar order parameter
analogously to Fig. 4 of the Letter for another parameter
set. Here we see even clearer minima in the Binder cumu-
lant. Furthermore we observe almost no difference in the
Binder cumulants of C2 and D2, thus one might equally
well use D2 instead of C2. In Fig. S16 we display the
Binder cumulant for another parameter set (large speed).
There, we also find clearly two transitions.

We obtain the critical point ηc(L) for the polar or-
der transition as the right local minimum of the Binder
cumulant in Fig. 4 (c) of the Letter for different finite
system sizes L. To extrapolate to infinitely large systems
we use the finite size scaling ansatz

ηc(L) = η∞c −A · Lα, (S.73)

If the wave fronts occuring in the polar ordered phase
would have the same shape for all system sizes and noise
strengths, we would require that the exponent α equals
to minus one. However, the shape of the wave fronts
depends on the noise strength. Therefore, we need to fit
all three parameters and obtain the values η∞c = 0.285,
A = 1.79 and α = −0.711. The ansatz (S.73) is shown
together with the measured values of ηc(L) in Fig. S17.
The results seem to agree very well, however, we should
keep in mind that we fitted three parameters with five
data points. In order to give a quantitative uncertainty
estimate of the fitted parameters, we need data for more
and larger system sizes. The results deliver therefore only
a rough estimate of the critical noise strength for the
infinite system size. However, the value we obtain via
finite size scaling is already quite close to the value that
was obtained by using a different method (values given
in the Letter).

B. Continuous time Vicsek-like model

Here, we consider a model similar to the Vicsek model
but with continuous time. As in the standard Vicsek
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lnL
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ln
[η
∞ c
−
η c

(L
)]

FIG. S17. Finite size scaling for the critical noise strength
of the polar order transition of the simulations presented in
Fig. 4 of the Letter. The blue line represents a fit of the finite
size scaling ansatz (S.73). The red circles show the measured
values for different system sizes.

model particles move in two dimensions with constant
speed and align their direction of motion with nearby par-
ticles. The system is defined by the following Langevin
equations

ẋi = v cos(θi)

ẏi = v sin(θi)

θ̇i = w(|Ω(i)|)
∑
j∈Ω(i)

sin(θj − θi) + σξi, i = 1, . . . , N,

(S.74)

Here, the neighborhood sets Ωi are defined as in the
standard Vicsek model above. The ξi(t) are independent
Gaussian white noise terms satisfying

〈ξi(t)ξj(s)〉 = δijδ(t− s). (S.75)

The interaction weight w is a function of the number of
neighbors including the particle itself. In this paper we
consider the case w(n) = 1/n.

In Figs. S18 and S19 we show the two-particle and
three-particle correlation parameters C2 and C3 for the
continuous time Vicsek-like model, respectively. The re-
sults are qualitatively equivalent to the ones in Fig. 3 of
the Letter and Fig. S11.

Note that the computation time of the correlation anal-
ysis is of the order of the particle number times the av-
erage number of neighbors. This is the same complexity
as for the Molecular Dynamics simulation itself. Hence,
measuring the correlation parameters does not signifi-
cantly increase the computation time.
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FIG. S18. Logarithm of the two-particle correlation param-
eter C2 divided by the average number of neighbors C1 in
dependence on noise strength σ and particle density for the
model defined in Eq. (S.74). The black solid line shows the
mean field transition towards polar order, whereas the black
stars represent the actually measured transition points. Sim-
ulation parameters: particle number N = 105, velocity v = 1,
interaction radius R = 1, time step ∆t = 0.03, the thermal-
ization time as well as the measurement time was 5×104 time
units. The results have been averaged over 16 realizations.
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FIG. S19. Logarithm of the three-particle correlation param-
eter C3 divided by the average number of neighbors C1 in
dependence on noise strength σ and particle density for the
model defined in Eq. (S.74). The black solid line shows the
mean field transition towards polar order, whereas the black
stars represent the actually measured transition points. Pa-
rameters as in Fig. S18.
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